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Abstract.  Video coding standards have incorporated various error 
resilience and error concealment tools, yet data losses during video 
transmission in mobile systems still pose big challenges.  Here an 
approach for error resilience in the application layer is proposed, 
employing SEC (second error control) with ECC (error correction coding) 
and some simulation results are presented.  
 

1     Introduction 
 
An inherent problem with video communication is that compressed video using 
current video coding standards is very vulnerable to channel noise, especially in 
mobile or wireless environments. Current video coding standards including MPEG-
1 [9], MPEG-2 [10], MPEG-4 [1], H.261 [11] and H.263 [7] employ DCT, motion 
estimation and compensation and variable length coding techniques to exploit 
spatial and temporal redundancy in natural video sequences, to achieve desired 
compression efficiency. While these techniques achieve good compression ratios, 
the resulting compressed bitstream is highly sensitive to bit errors. For instance, a 
single bit error in the compressed bitstream may propagate until the next 
synchronization point in the bitstream, which will greatly degrade the quality of the 
decoded video. Diverse error resilience and error concealment techniques have thus 
been proposed [4,13]. Compatibility of any new approach with current video coding 
standards is desirable to maintain interoperability.  

In the MPEG-4 standard, five error resilience coding tools have been 
incorporated. Resynchronisation or packetization attempts to stop error propagation 
after an error or errors have been detected, by inserting resynchronisation markers 
into the bitstream. Data between the synchronization point prior to the error and the 
first point where synchronization is re-established, is usually discarded.  Different 
from resynchronisation, Data Partitioning (DP) is an error concealment tool which 
is realised by separating the motion and macroblock header information from the 
texture information.  If the texture information is lost, this approach utilizes the 
motion information to conceal these errors. Reversible VLC (Variable Length Code) 
is designed such that a bitstream can be instantaneously decoded in both forward 
and reverse directions. A part of a bitstream, which cannot be decoded in the 
forward direction due to the presence of errors, can often be decoded in the 
backward direction, recovering some information which would otherwise have been 
discarded. However, RVLC is only applied to TCOEF (Texture Coefficient) coding 
at this stage. Adaptive Intra Refresh (AIR) is a technique using the intra refresh 
method to provide error resilience. In AIR mode, the moving part of the frame is 
encoded frequently in the Intra mode. Since corruption of the bitstream is more 
visibly noticeable in the moving parts of a video sequence, AIR will help give quick 
recovery from any errors. NEWPRED mode is another error resilience tool in which 
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the reference picture for inter-frame coding is replaced adaptively according to 
upstream messages from the decoder.  

Obviously AIR will increase the encoded bitstream rate significantly, while 
NEWPRED needs upstream messaging from the decoder, which may not be 
practical in some situations, especially in a multi-party video communication 
system. While Resynchronisation, Data Partitioning and Reversible VLC do give 
protection to the encoded bitstream, they also have their disadvantages.  Firstly, they 
are passive as the loss of information caused by discarding bits in error is 
unrecoverable, so with the inter-frame error propagation effect the reconstructed 
video quality rapidly degrades to unrecognizable if no other measure is taken.  
Secondly, while bringing error resilience, they also introduce vulnerability.  If the 
errors happen to be within markers (including resynchronisation marker, DC 
marker or motion marker), the decoder will lose synchronization, meaning a whole 
packet or even several packets must be discarded. Finally, there is an associated loss 
of efficiency with this scheme.  In our simulation with video sequences Salesman 
and Akiyo, with the packet size set to 600 bits, packetization combining DP and 
RVLC results in a bitrate increase of over 9.9% in the final bitstream.   

Generally, reducing packet size may further increase the robustness of the 
encoded bitstream, at the cost of coding efficiency. However, there is a limit on the 
effectiveness of improving the robustness by reducing the packet size due to the 
reasons stated above.  So in some extreme channel conditions, an acceptable quality 
of video communications becomes impossible to achieve by simply employing the 
error resilience tools in MPEG-4.  An example is that when the packet is so small 
that it contains only one macroblock, the bitstream will be more vulnerable than not 
using packetization, as the markers will take a higher percentage of the bitstream.  
Obviously other tools are needed. 

 
2     Second Error Control (SEC) 

 
Regarding the disadvantages of the current error resilience tools, we can ask 
whether we have to accept the error bits in the final video bitstream? If the answer is 
yes, then the current available error resilience techniques are the only choices, 
meaning we will have to accept the poor quality of real-time video transmission 
associated with these techniques. If the answer is no, we have to find some 
mechanism to correct these errors before final video decoding, so some kind of error 
control in the application layer is needed. To apply second error control (SEC) in 
the application layer after the first error control in the data link layer sounds 
unrealistic because of the huge overhead associated with the usual error control. 
Obviously employing ARQ in SEC is not realistic after the first error control, which 
probably has used up all the time limit allowed for retransmission with ARQ. A 
better option is to use error correction coding (ECC). Now another question arises, 
is there an effective error correction code with extremely high coding efficiency? 
With an overhead increase of more or less 9.9% in the final bitstream for error 
resilience, can we do something better? Considering the capability that PCC 
(punctured convolutional code) [3,12] can exhibit, the answer to the question may 
be yes. If ECC is applied to the application layer to correct those bits in error, that 
means we are going to take a SEC approach for real-time applications. Obviously 
SEC is an active error protection approach in the sense that it can recover the 
corrupted bitstream by correcting the errors in the bitstream. Does it work? Is PCC 
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efficient enough? Before these questions can be answered, we must understand the 
fundamentals of PCC.   
 
3     Punctured Convolutional Coding (PCC) 
 
Convolutional coding [2] with its optimum Viterbi decoding, is an effective forward 
error correction (FEC) technique to improve the capacity of a channel: it is 
commonly used in channel coding. However there is no reason why it cannot be 
used with source coding. Convolutional codes are usually described using two 
parameters: the code rate and the constraint length. The code rate, k/n, is expressed 
as a ratio of the number of bits of the convolutional encoder (k) to the number of 
channel symbols output by the convolutional encoder (n) in a given encoder cycle. 
The constraint length parameter, K, denotes the “length” of the convolutional 
encoder, i.e. how many k-bit stages are available to feed the combinatorial logic that 
produces the output symbols. Closely related to K is the parameter, m, which 
indicates how many encoder cycles an input bit is retained and used for encoding 
after it first appears at the input to the convolutional encoder. The m parameter can 
be thought of as the memory length of the encoder. Increase of K or m usually 
improves the performance of convolutional codes. 

A punctured convolutional code (PCC) is a high rate code obtained by the 
periodic elimination of specific code symbols from the output of a low rate encoder. 
The performance of punctured convolutional codes is degraded compared with the 
original codes, however the degradation is rather gentle as the coding rate increases 
from ½ to 7/8 and even higher. From existing work [3] it can be seen that: 
1. For the same rate punctured codes, the coding gain increases by 0.2 – 0.5dB 
with the increase of the constraint length K by 1. 
2. Although the coding gain of punctured codes decreases as the coding rate 
increases, the coding gain is still high even for the high rate punctured codes. For 
example, a 13/14 code provides a coding gain larger than 3dB if K >= 7. 
 
4     Error Correction Coded (ECC) Video 
 
In this work a new approach is proposed, in which the encoded bitstream is not 
protected by resynchronisation, data partitioning and RVLC; instead it is protected 
with ECC, which is realized with PCC in this work. After each video frame is 
encoded, the bitstream is segmented into segments and each segment is further 
encoded using ECC. There are three reasons for choosing convolutional coding. 
First, convolutional coding is more suited to mobile channels: enhanced with 
interleaving, it is very good at coping with bursty errors and packet loss. Second, it 
is easier to adapt the rate of error correction coding with PCC according to the 
residue error conditions. Here the residue error refers to the errors left to the 
application layer by the network after first error control takes place in data link 
layer. Third, when punctured, convolutional codes can achieve high coding rates 
while still retaining good error correction capability.   
    A generalised video transmission system employing ECC is shown in Figure 1.  
The interleaving operation provided in the system is to cope with bursty errors. The  
interleaving principle is to spread the bursty error into a wide range, by reordering 
the encoded video bitstream data which has gone through compression and the ECC 
procedure, and so to make it easier for the convolutional decoder to correct errors in 
the bitstream. More detail on interleaving to cope with bursty errors is found in [14]. 
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Figure 1:  Video Communications System with ECC and Interleaving 

From Figure 1 it is clear that here ECC enhanced with interleaving is not part of 
channel coding, although PCC has been widely used as a channel coding scheme in 
the data link layer of many other communication systems. Instead it is part of source 
coding for error resilience purposes: more precisely it is a SEC approach in addition 
to the first error control (conventional error control) in the data link layer. 
Obviously the operation of ECC on the compressed video bitstream is different from 
the ordinary forward error correction (FEC) technique commonly employed in the 
data link layer of the network, though in principle they take similar roles in 
correcting the errors in the bitstream. First, FEC is usually employed as a channel 
coding mechanism to improve the capacity of a channel and often combined with 
ARQ (automatic repeat request). From the point of view of the layered structure of 
telecommunication networks, FEC usually exists in the data link layer while ECC 
on an encoded video bitstream is part of the application layer, therefore is 
considered as part of the source data by FEC.  Second, the design and choice of FEC 
usually depends on the channel conditions and the associated ARQ mechanism, 
while the design and choice of ECC depends on the capability of the network to 
combat the errors in the telecommunication channels. Third, FEC works on the 
original errors existing in the unfavorable communication channel, while ECC 
works on the residue error left in the source data by the network. In another words, 
FEC belongs to first error control while ECC belongs to second error control. 
     
5 Simulation Results   
 
To evaluate the effectiveness of the proposed algorithm, two video sequences are 
used: Akiyo with relatively slow motion and Salesman with fast movement.  For 
each, the PSNR (Peak Signal-to-Noise Ratio) of the resulting video is compared for 
the bitstream protected with ECC, against the bitstream protected with 
packetization. The experiments are conducted based on the following conditions.   
1. 50 picture frames of each video sequence are encoded with the first frame coded 
as I frame followed by P frame without rate control.  
2. Packet size of both video sequences is 600 bits when packetization is used.   
3. When ECC is employed, the ½ rate base convolutional code (561, 752) is 
chosen which has a constraint length of K=9. This base code is punctured to rate 
11/12, which means that for every 11 bits in the encoded bitstream using the MPEG 
standard, another bit is added after convolutional encoding.   
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4. Convolutional encoded bitstream is decoded using the soft decision Viterbi 
decoding algorithm with trellis depth of 21xK.   
5. Data partitioning and RVLC are employed with packetization, but not with 
ECC.  
6. The same quantization parameters are used in all experiments, which means 
that correctly decoded bitstreams should have the same visual quality for the same 
video sequence in an error free environment. 
7.   In each test, the encoded bitstream is randomly error corrupted with Gaussian 
noise before being decoded, with BER (Bit Error Rate) set to 10-3 and 10-4 
respectively.  
8.   After the corrupted bitstreams are decoded, the erroneous motion vectors and 
texture information are replaced by 0. This means that when motion vectors are not 
available, motion compensation is implemented by re-using the motion vectors from 
the same position in the previous frame.  When the texture information is not 
available, the block is reconstructed using texture information from blocks 
referenced by the motion vectors. 

To better express our results, we adopt the following notation.  By ECC(11/12) 
we mean the ECC scheme is used at the application layer with ECC rate set to 
11/12.  By Packetization(600), we mean packetization is used with a packet size of 
600 pixels. The simulation experiments reported in this work are mainly focused on 
the performance of ECC in random error situations, as the performance of ECC in 
bursty error and loss has been proved (for which more details can be found in [5]). 
The simulation results obtained (PSNR versus frame number) with random errors by 
averaging results from 100 individual tests, are shown in Figures 2 and 4. Figures 3 
and 5 are zoomed in versions of these, to make the viewing of the results easier and 
clearer. Coding rate comparisons between ECC and packetization are shown in 
Tables 1 and 2. The advantage when using ECC with soft decision Viterbi decoding 
instead of packetization is clearly seen. ECC video with soft decision Viterbi 
decoding delivers decent reconstructed video even when the BER of the final video 
bitstream reaches 10-3, with PSNR which is less than 1db lower compared with 
transmission-error free situation. In contrast, packetization cannot deliver a decent 
reconstructed video output while decoding the corrupted video bitstream even when 
the BER of the final video bitstream only reaches 10-4. 

   When the BER of the final bitstream reaches 10-4, ECC(11/12) delivers a video 
output with PSNR which is nearly the same as the transmission-error free situation 
for video sequences Salesman; while for Akiyo it delivers a video output with PSNR 
which is absolutely the same as the transmission-error free situation (see Figure 3, 
where the PSNR line for BER of 10-4 is coincident with the PSNR line for 
transmission-error free). In 99 out of 100 tests, the ECC corrects all of the 
transmission errors in the bitstream, leaving only one test with 5 bits in error for 
Salesman and 3 bits in error for Akiyo for the 50 frames after ECC decoding. 

Here another question can be raised, how can a bitstream with transmission-
errors still deliver a video output with PSNR which is the same as the transmission-
error free situation? The answer is that when the bits in error in the bitstream 
correspond to the reconstructed picture areas, where there is no movement in the 
content of the picture, a basic error concealment operation (i.e. copying the 
corresponding area from the previous frame) will conceal the error effect 
completely. 

With further negligible increase of ECC rate, our experiments also reveal that 
when ECC(9/11) is used, the ECC operation corrects all the transmission errors in 
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the bitstreams of both sequences Akiyo and Salesman for all the 100 tests when the 
BER of the final bitstream is set to 10-4, delivering transmission-error free 
reconstructed video output. Based on 100 tests, our experiments also reveal that 
ECC with coding rate of 7/8 will correct all the transmission errors in the bitstream 
of these two video sequences, when the BER of the final video bitstream reaches 10-

3. In these cases, the PSNRs of the video outputs are identical to the PSNRs of video 
sequences transmitted in an error free situation and there is no point to depict 
separate PSNR plots. The 11/12 puncturing rate of the convolutional code results in 
a 9.2% increase of final bit rate and the 9/10 puncturing rate of the convolutional 
code results in an 11.21% increase of the final bit rate, which does not seem very 
efficient.  However from Tables 1 and 2 we can see that without employing RVLC, 
the bit number for the final bitstream using ECC(11/12) is still less than the number 
of bits for the final bitstream based on Packetization(600). It should be noted that 
the video decoding process is compatible with the current MPEG-4 standard, as it 
operates after compression and before decoding of the bitstream. 

It is noteworthy that a similar approach has been introduced in the H.263 [7] 
video coding standard. In Annex H of H.263, forward error correction (FEC) for 
coded video signal is realized using block code BCH (511, 493). This allows for 492 
bits of the coded data to be appended with 2 bits of framing information and 18 bits 
of parity information to form a FEC frame. The FEC coding allows the correction of 
single bit error in each FEC frame and the detection of two bit errors for an 
approximately 4% increase in bit rate. The FEC mechanism of Annex H is designed 
for ISDN, which is an isochronous, very low error rate network. No doubt the FEC 
capability of correcting errors is very limited compared with ECC video in harsher 
environments. First, the number of error bits ECC can correct is not limited to one 
in a chunk of 492 bits of the coded data. Second, ECC has the capability to cope 
with bursty errors and packet loss while FEC does not have these capabilities. Third, 
FEC is not so flexible for residue channel error conditions, while ECC can be 
adaptive to these.  

 
6     ECC Video Design Considerations 

 
The ECC operation based on segments results in a decoding delay of one segment, 
as the decoder needs to decode the punctured convolutional code first based on the 
segment. To reduce the effect of this decoding delay, the segment should not be set 
too big. The packetization (resynchronization) approach also introduces a decoding 
delay of one packet, so similarly the packet size should not be too long, to reduce the 
effect of decoding delay if packetization/resynchronization is employed. 

To employ ECC with soft-decision Viterbi decoding, the network needs to deliver 
soft-decision output to application layer [6]. This can be accomplished by 
monitoring the difference between the survivor path and the path that has the next 
best metric in the channel decoding process, if channel coding is also achieved with 
convolutional coding. By monitoring the metric distance between different paths, 
the channel decoder produces reliability information assigned to each decoded bit. 

The fundamental difference between SEC approaches for error resilience and 
traditional schemes represented by resynchronisation/packetization, DP and RVLC 
is that SEC applies before video decoding, while traditional approaches apply after 
video decoding. The SEC scheme fixes errors in the video bitstream before video 
decoding, while the traditional approach accepts the errors before video decoding 
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and tries to hide or “repair” the error effects after video decoding via some error 
concealment techniques. 

These different approaches toward error resilience create another feature which 
distinguishes ECC from resynchronisation/packetization. The performance of ECC 
mainly depends on the residue error conditions and the capability of ECC to correct 
error bits in the bitstream, if the ECC code is properly designed based on the residue 
error conditions and does not depend on the contents of the video sequence. This 
has been proven by simulation results, where ECC(7/8) corrects all transmission 
errors when the residue error is random and the BER of the video bitstream is less 
than 10-3. However, the performance of packetization not only depends on the 
packet size and the residue error conditions, but also depends on the content of the 
particular video sequence, because basically the packetization approach relies 
heavily on the employment of techniques for error concealment. That is the main 
reason why we have not conducted experiments with other video sequences except 
the video sequences Akiyo and Salesman.   

 The SEC approach has provided a fresh view on both error control and error 
resilience coding. Traditionally implemented at the data link layer, error control is 
now not only a technique to improve the channel capacity at that layer but is also 
useful as an active error resilience tool implemented in the application layer. It 
combines several aspects of network operations into a generic and extended 
framework, which we can still call “Error Control”, but now the term has a broader 
meaning. Under this broader meaning, source coding, channel coding and error 
resilience are not separate operations but different aspects of a functionally 
integrated error resilient real-time video delivery.  

 
7 Conclusion and Future Work 

 
In this paper, the passive conventional MPEG-4 error resilience tools are challenged 
by a simpler, more efficient and effective error resilience approach with second error 
correction, which is realized with error correction coding. In this work, ECC is 
implemented using punctured convolutional code. Based on the simulation results 
from this and previous work [6], ECC is much more beneficial than the passive 
error resilience tools in MPEG-4 to combat random or bursty errors in the final 
bitstream.   

This work has proved the success of the SEC approach by simulation. In 
principle each individual technique in SEC is not a revolutionary innovation, but to 
apply ECC in the application layer is a new concept. Simply employing a technique 
commonly used in the area of channel coding in the data link layer now to the 
application layer, the results obtained by simulation are encouraging. At least we 
should have a reason to re-examine the error resilience tools in MPEG-4 and other 
video coding standards. Are these tools in the standards optimised for practical 
utilization? Are they the best tools in terms of effectiveness and efficiency? Adding 
redundancy in the video bitstream at the application layer to realize error resilience 
in different ways (resynchronisation/packetization versus ECC) results in different 
performance outcomes. The results obtained in this work are only by simulation. 
The performance of these two different approaches towards error resilience need to 
be tested and compared in a field implementation in the real world. Future work 
includes extending the SEC scheme to other real-time applications. We hope this 
work can open a new direction to the video coding and transmission community in 
the field of error resilience coding. 
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 For ECC video, the coding efficiency can be further improved if a dynamic ECC 
is designed and implemented for video communication in mobile environments, 
where channel conditions and therefore the residue error conditions vary, with 
which the ECC rate can follow the change of residue error conditions. The 
distribution of error control between first error control and second error control 
needs to be optimized. The distribution of the available bandwidth of radio channels 
for source coding, first error control and SEC needs to be optimized as well. A 
generic rate control algorithm based on these optimum distributions will be more 
effective and efficient.  More effective first error control schemes including FEC and 
ARQ at the data link layer need to be further investigated, taking second error 
control at the application layer into consideration. 

 To cope with wide range of residue error conditions, the optimum puncturing 
patterns of good base convolutional codes need to be further explored. At this stage 
the reported highest punctured code rate for base code (171,133) is 16/17 [8], while 
the highest punctured code rate for base code (561,752) is 13/14 [3]. The puncturing 
pattern of higher code rate of 14/15 15/16, 16/17 17/18, 18/19, etc. needs to be 
found for base code (561,752) or other good base codes including those with 
constraint length longer than 9, as higher rate codes will make ECC video more 
efficient in favorable channel conditions. 

This work was supported by the Commonwealth of Australia under the 
Cooperative Research Centres program. 
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Figure 2: PSNR for Salesman with random errors. 
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Figure 3: PSNR for Salesman with random errors (zoom in) 
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Figure 4: PSNR for Akiyo with random errors 
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Figure 5: PSNR for Akiyo with random errors (zoom in)  
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Table 1 Bitrate Comparison between Packetization 
and ECC with Akiyo 

 Table 2 Bitrate Comparison between Packetization 
and ECC with Salesman 

Frame No ECC (11/12) Packetization (600)  Frame Nor ECC(11/12) Packetization (600) 
0 46792 50352  0 77896 81168 
1 528 488  1 8600 8744 
2 664 616  2 14176 14120 
3 664 616  3 16320 16256 
4 1120 1112  4 15592 15464 
5 1048 1040  5 12536 12568 
6 1112 1088  6 8888 8872 
7 1296 1272  7 8488 8520 
8 1536 1552  8 9280 9312 
9 1728 1736  9 9272 9328 

10 1624 1632  10 10272 10344 
11 1448 1472  11 9480 9480 
12 2064 2024  12 8472 8456 
13 2016 1976  13 9432 9496 
14 2880 2912  14 10120 10088 
15 4168 4208  15 10200 10080 
16 5760 5840  16 8688 8640 
17 6984 7000  17 9880 9920 
18 7752 7896  18 14472 14320 
19 7616 7704  19 16744 16624 
20 6824 6880  20 14232 14224 
21 6296 6352  21 10712 10904 
22 5224 5232  22 10536 10696 
23 4344 4368  23 9048 9032 
24 4296 4312  24 6440 6440 
25 3176 3184  25 5720 5712 
26 3096 3104  26 7032 7032 
27 3808 3848  27 7976 8024 
28 4808 4816  28 6848 6840 
29 5496 5512  29 5096 5080 
30 6008 6048  30 5928 5912 
31 6056 6112  31 6824 6848 
32 5160 5176  32 7496 7624 
33 4320 4344  33 8280 8416 
34 4664 4688  34 11040 11120 
35 4976 5008  35 13872 13848 
36 5216 5256  36 16000 15920 
37 5080 5128  37 14216 14088 
38 5280 5272  38 14888 14880 
39 5352 5408  39 13384 13416 
40 4832 4840  40 11096 11120 
41 4808 4872  41 11352 11328 
42 4296 4328  42 10728 10648 
43 3736 3752  43 10216 10248 
44 3784 3784  44 10856 10840 
45 4384 4416  45 11488 11600 
46 4760 4760  46 9464 9520 
47 4984 5040  47 8968 8976 
48 5072 5096  48 8360 8432 
49 4480 4504  49 7784 7856 

Total 243416 247976  Total 584688 588424 
Average 4868.32 4959.52  Average 11693.76 11768.48 
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