
ECC Video: An Active Approach for Error Resilience

Bing Du, Anthony Maeder and Miles Moody

 School of Electrical and Electronic Systems Engineering
Queensland University of Technology, Brisbane, Australia

Abstract. Video coding standards have incorporated various error
resilience and error concealment tools, yet data losses during video
transmission in mobile systems still pose big challenges. Here an
approach for error resilience in the application layer is proposed,
employing SEC (second error control) with ECC (error correction coding)
and some simulation results are presented.

1 Introduction

An inherent problem with video communication is that compressed video using
current video coding standards is very vulnerable to channel noise, especially in
mobile or wireless environments. Current video coding standards including MPEG-
1 [9], MPEG-2 [10], MPEG-4 [1], H.261 [11] and H.263 [7] employ DCT, motion
estimation and compensation and variable length coding techniques to exploit
spatial and temporal redundancy in natural video sequences, to achieve desired
compression efficiency. While these techniques achieve good compression ratios,
the resulting compressed bitstream is highly sensitive to bit errors. For instance, a
single bit error in the compressed bitstream may propagate until the next
synchronization point in the bitstream, which will greatly degrade the quality of the
decoded video. Diverse error resilience and error concealment techniques have thus
been proposed [4,13]. Compatibility of any new approach with current video coding
standards is desirable to maintain interoperability.

In the MPEG-4 standard, five error resilience coding tools have been
incorporated. Resynchronisation or packetization attempts to stop error propagation
after an error or errors have been detected, by inserting resynchronisation markers
into the bitstream. Data between the synchronization point prior to the error and the
first point where synchronization is re-established, is usually discarded. Different
from resynchronisation, Data Partitioning (DP) is an error concealment tool which
is realised by separating the motion and macroblock header information from the
texture information. If the texture information is lost, this approach utilizes the
motion information to conceal these errors. Reversible VLC (Variable Length Code)
is designed such that a bitstream can be instantaneously decoded in both forward
and reverse directions. A part of a bitstream, which cannot be decoded in the
forward direction due to the presence of errors, can often be decoded in the
backward direction, recovering some information which would otherwise have been
discarded. However, RVLC is only applied to TCOEF (Texture Coefficient) coding
at this stage. Adaptive Intra Refresh (AIR) is a technique using the intra refresh
method to provide error resilience. In AIR mode, the moving part of the frame is
encoded frequently in the Intra mode. Since corruption of the bitstream is more
visibly noticeable in the moving parts of a video sequence, AIR will help give quick
recovery from any errors. NEWPRED mode is another error resilience tool in which

1027

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

the reference picture for inter-frame coding is replaced adaptively according to
upstream messages from the decoder.

Obviously AIR will increase the encoded bitstream rate significantly, while
NEWPRED needs upstream messaging from the decoder, which may not be
practical in some situations, especially in a multi-party video communication
system. While Resynchronisation, Data Partitioning and Reversible VLC do give
protection to the encoded bitstream, they also have their disadvantages. Firstly, they
are passive as the loss of information caused by discarding bits in error is
unrecoverable, so with the inter-frame error propagation effect the reconstructed
video quality rapidly degrades to unrecognizable if no other measure is taken.
Secondly, while bringing error resilience, they also introduce vulnerability. If the
errors happen to be within markers (including resynchronisation marker, DC
marker or motion marker), the decoder will lose synchronization, meaning a whole
packet or even several packets must be discarded. Finally, there is an associated loss
of efficiency with this scheme. In our simulation with video sequences Salesman
and Akiyo, with the packet size set to 600 bits, packetization combining DP and
RVLC results in a bitrate increase of over 9.9% in the final bitstream.

Generally, reducing packet size may further increase the robustness of the
encoded bitstream, at the cost of coding efficiency. However, there is a limit on the
effectiveness of improving the robustness by reducing the packet size due to the
reasons stated above. So in some extreme channel conditions, an acceptable quality
of video communications becomes impossible to achieve by simply employing the
error resilience tools in MPEG-4. An example is that when the packet is so small
that it contains only one macroblock, the bitstream will be more vulnerable than not
using packetization, as the markers will take a higher percentage of the bitstream.
Obviously other tools are needed.

2 Second Error Control (SEC)

Regarding the disadvantages of the current error resilience tools, we can ask
whether we have to accept the error bits in the final video bitstream? If the answer is
yes, then the current available error resilience techniques are the only choices,
meaning we will have to accept the poor quality of real-time video transmission
associated with these techniques. If the answer is no, we have to find some
mechanism to correct these errors before final video decoding, so some kind of error
control in the application layer is needed. To apply second error control (SEC) in
the application layer after the first error control in the data link layer sounds
unrealistic because of the huge overhead associated with the usual error control.
Obviously employing ARQ in SEC is not realistic after the first error control, which
probably has used up all the time limit allowed for retransmission with ARQ. A
better option is to use error correction coding (ECC). Now another question arises,
is there an effective error correction code with extremely high coding efficiency?
With an overhead increase of more or less 9.9% in the final bitstream for error
resilience, can we do something better? Considering the capability that PCC
(punctured convolutional code) [3,12] can exhibit, the answer to the question may
be yes. If ECC is applied to the application layer to correct those bits in error, that
means we are going to take a SEC approach for real-time applications. Obviously
SEC is an active error protection approach in the sense that it can recover the
corrupted bitstream by correcting the errors in the bitstream. Does it work? Is PCC

1028

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

efficient enough? Before these questions can be answered, we must understand the
fundamentals of PCC.

3 Punctured Convolutional Coding (PCC)

Convolutional coding [2] with its optimum Viterbi decoding, is an effective forward
error correction (FEC) technique to improve the capacity of a channel: it is
commonly used in channel coding. However there is no reason why it cannot be
used with source coding. Convolutional codes are usually described using two
parameters: the code rate and the constraint length. The code rate, k/n, is expressed
as a ratio of the number of bits of the convolutional encoder (k) to the number of
channel symbols output by the convolutional encoder (n) in a given encoder cycle.
The constraint length parameter, K, denotes the “length” of the convolutional
encoder, i.e. how many k-bit stages are available to feed the combinatorial logic that
produces the output symbols. Closely related to K is the parameter, m, which
indicates how many encoder cycles an input bit is retained and used for encoding
after it first appears at the input to the convolutional encoder. The m parameter can
be thought of as the memory length of the encoder. Increase of K or m usually
improves the performance of convolutional codes.

A punctured convolutional code (PCC) is a high rate code obtained by the
periodic elimination of specific code symbols from the output of a low rate encoder.
The performance of punctured convolutional codes is degraded compared with the
original codes, however the degradation is rather gentle as the coding rate increases
from ½ to 7/8 and even higher. From existing work [3] it can be seen that:
1. For the same rate punctured codes, the coding gain increases by 0.2 – 0.5dB
with the increase of the constraint length K by 1.
2. Although the coding gain of punctured codes decreases as the coding rate
increases, the coding gain is still high even for the high rate punctured codes. For
example, a 13/14 code provides a coding gain larger than 3dB if K >= 7.

4 Error Correction Coded (ECC) Video

In this work a new approach is proposed, in which the encoded bitstream is not
protected by resynchronisation, data partitioning and RVLC; instead it is protected
with ECC, which is realized with PCC in this work. After each video frame is
encoded, the bitstream is segmented into segments and each segment is further
encoded using ECC. There are three reasons for choosing convolutional coding.
First, convolutional coding is more suited to mobile channels: enhanced with
interleaving, it is very good at coping with bursty errors and packet loss. Second, it
is easier to adapt the rate of error correction coding with PCC according to the
residue error conditions. Here the residue error refers to the errors left to the
application layer by the network after first error control takes place in data link
layer. Third, when punctured, convolutional codes can achieve high coding rates
while still retaining good error correction capability.
 A generalised video transmission system employing ECC is shown in Figure 1.
The interleaving operation provided in the system is to cope with bursty errors. The
interleaving principle is to spread the bursty error into a wide range, by reordering
the encoded video bitstream data which has gone through compression and the ECC
procedure, and so to make it easier for the convolutional decoder to correct errors in
the bitstream. More detail on interleaving to cope with bursty errors is found in [14].

1029

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

Figure 1: Video Communications System with ECC and Interleaving

From Figure 1 it is clear that here ECC enhanced with interleaving is not part of
channel coding, although PCC has been widely used as a channel coding scheme in
the data link layer of many other communication systems. Instead it is part of source
coding for error resilience purposes: more precisely it is a SEC approach in addition
to the first error control (conventional error control) in the data link layer.
Obviously the operation of ECC on the compressed video bitstream is different from
the ordinary forward error correction (FEC) technique commonly employed in the
data link layer of the network, though in principle they take similar roles in
correcting the errors in the bitstream. First, FEC is usually employed as a channel
coding mechanism to improve the capacity of a channel and often combined with
ARQ (automatic repeat request). From the point of view of the layered structure of
telecommunication networks, FEC usually exists in the data link layer while ECC
on an encoded video bitstream is part of the application layer, therefore is
considered as part of the source data by FEC. Second, the design and choice of FEC
usually depends on the channel conditions and the associated ARQ mechanism,
while the design and choice of ECC depends on the capability of the network to
combat the errors in the telecommunication channels. Third, FEC works on the
original errors existing in the unfavorable communication channel, while ECC
works on the residue error left in the source data by the network. In another words,
FEC belongs to first error control while ECC belongs to second error control.

5 Simulation Results

To evaluate the effectiveness of the proposed algorithm, two video sequences are
used: Akiyo with relatively slow motion and Salesman with fast movement. For
each, the PSNR (Peak Signal-to-Noise Ratio) of the resulting video is compared for
the bitstream protected with ECC, against the bitstream protected with
packetization. The experiments are conducted based on the following conditions.
1. 50 picture frames of each video sequence are encoded with the first frame coded
as I frame followed by P frame without rate control.
2. Packet size of both video sequences is 600 bits when packetization is used.
3. When ECC is employed, the ½ rate base convolutional code (561, 752) is
chosen which has a constraint length of K=9. This base code is punctured to rate
11/12, which means that for every 11 bits in the encoded bitstream using the MPEG
standard, another bit is added after convolutional encoding.

Source
Source
Encoder

ECC
Encoder

Channel
Encoder

Channel

Channel
Decoder

ECC
Decoder

Source
Decoder

Display

Inter
Leave

Deinter
Leaver

1030

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

4. Convolutional encoded bitstream is decoded using the soft decision Viterbi
decoding algorithm with trellis depth of 21xK.
5. Data partitioning and RVLC are employed with packetization, but not with
ECC.
6. The same quantization parameters are used in all experiments, which means
that correctly decoded bitstreams should have the same visual quality for the same
video sequence in an error free environment.
7. In each test, the encoded bitstream is randomly error corrupted with Gaussian
noise before being decoded, with BER (Bit Error Rate) set to 10-3 and 10-4
respectively.
8. After the corrupted bitstreams are decoded, the erroneous motion vectors and
texture information are replaced by 0. This means that when motion vectors are not
available, motion compensation is implemented by re-using the motion vectors from
the same position in the previous frame. When the texture information is not
available, the block is reconstructed using texture information from blocks
referenced by the motion vectors.

To better express our results, we adopt the following notation. By ECC(11/12)
we mean the ECC scheme is used at the application layer with ECC rate set to
11/12. By Packetization(600), we mean packetization is used with a packet size of
600 pixels. The simulation experiments reported in this work are mainly focused on
the performance of ECC in random error situations, as the performance of ECC in
bursty error and loss has been proved (for which more details can be found in [5]).
The simulation results obtained (PSNR versus frame number) with random errors by
averaging results from 100 individual tests, are shown in Figures 2 and 4. Figures 3
and 5 are zoomed in versions of these, to make the viewing of the results easier and
clearer. Coding rate comparisons between ECC and packetization are shown in
Tables 1 and 2. The advantage when using ECC with soft decision Viterbi decoding
instead of packetization is clearly seen. ECC video with soft decision Viterbi
decoding delivers decent reconstructed video even when the BER of the final video
bitstream reaches 10-3, with PSNR which is less than 1db lower compared with
transmission-error free situation. In contrast, packetization cannot deliver a decent
reconstructed video output while decoding the corrupted video bitstream even when
the BER of the final video bitstream only reaches 10-4.

 When the BER of the final bitstream reaches 10-4, ECC(11/12) delivers a video
output with PSNR which is nearly the same as the transmission-error free situation
for video sequences Salesman; while for Akiyo it delivers a video output with PSNR
which is absolutely the same as the transmission-error free situation (see Figure 3,
where the PSNR line for BER of 10-4 is coincident with the PSNR line for
transmission-error free). In 99 out of 100 tests, the ECC corrects all of the
transmission errors in the bitstream, leaving only one test with 5 bits in error for
Salesman and 3 bits in error for Akiyo for the 50 frames after ECC decoding.

Here another question can be raised, how can a bitstream with transmission-
errors still deliver a video output with PSNR which is the same as the transmission-
error free situation? The answer is that when the bits in error in the bitstream
correspond to the reconstructed picture areas, where there is no movement in the
content of the picture, a basic error concealment operation (i.e. copying the
corresponding area from the previous frame) will conceal the error effect
completely.

With further negligible increase of ECC rate, our experiments also reveal that
when ECC(9/11) is used, the ECC operation corrects all the transmission errors in

1031

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

the bitstreams of both sequences Akiyo and Salesman for all the 100 tests when the
BER of the final bitstream is set to 10-4, delivering transmission-error free
reconstructed video output. Based on 100 tests, our experiments also reveal that
ECC with coding rate of 7/8 will correct all the transmission errors in the bitstream
of these two video sequences, when the BER of the final video bitstream reaches 10-

3. In these cases, the PSNRs of the video outputs are identical to the PSNRs of video
sequences transmitted in an error free situation and there is no point to depict
separate PSNR plots. The 11/12 puncturing rate of the convolutional code results in
a 9.2% increase of final bit rate and the 9/10 puncturing rate of the convolutional
code results in an 11.21% increase of the final bit rate, which does not seem very
efficient. However from Tables 1 and 2 we can see that without employing RVLC,
the bit number for the final bitstream using ECC(11/12) is still less than the number
of bits for the final bitstream based on Packetization(600). It should be noted that
the video decoding process is compatible with the current MPEG-4 standard, as it
operates after compression and before decoding of the bitstream.

It is noteworthy that a similar approach has been introduced in the H.263 [7]
video coding standard. In Annex H of H.263, forward error correction (FEC) for
coded video signal is realized using block code BCH (511, 493). This allows for 492
bits of the coded data to be appended with 2 bits of framing information and 18 bits
of parity information to form a FEC frame. The FEC coding allows the correction of
single bit error in each FEC frame and the detection of two bit errors for an
approximately 4% increase in bit rate. The FEC mechanism of Annex H is designed
for ISDN, which is an isochronous, very low error rate network. No doubt the FEC
capability of correcting errors is very limited compared with ECC video in harsher
environments. First, the number of error bits ECC can correct is not limited to one
in a chunk of 492 bits of the coded data. Second, ECC has the capability to cope
with bursty errors and packet loss while FEC does not have these capabilities. Third,
FEC is not so flexible for residue channel error conditions, while ECC can be
adaptive to these.

6 ECC Video Design Considerations

The ECC operation based on segments results in a decoding delay of one segment,
as the decoder needs to decode the punctured convolutional code first based on the
segment. To reduce the effect of this decoding delay, the segment should not be set
too big. The packetization (resynchronization) approach also introduces a decoding
delay of one packet, so similarly the packet size should not be too long, to reduce the
effect of decoding delay if packetization/resynchronization is employed.

To employ ECC with soft-decision Viterbi decoding, the network needs to deliver
soft-decision output to application layer [6]. This can be accomplished by
monitoring the difference between the survivor path and the path that has the next
best metric in the channel decoding process, if channel coding is also achieved with
convolutional coding. By monitoring the metric distance between different paths,
the channel decoder produces reliability information assigned to each decoded bit.

The fundamental difference between SEC approaches for error resilience and
traditional schemes represented by resynchronisation/packetization, DP and RVLC
is that SEC applies before video decoding, while traditional approaches apply after
video decoding. The SEC scheme fixes errors in the video bitstream before video
decoding, while the traditional approach accepts the errors before video decoding

1032

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

and tries to hide or “repair” the error effects after video decoding via some error
concealment techniques.

These different approaches toward error resilience create another feature which
distinguishes ECC from resynchronisation/packetization. The performance of ECC
mainly depends on the residue error conditions and the capability of ECC to correct
error bits in the bitstream, if the ECC code is properly designed based on the residue
error conditions and does not depend on the contents of the video sequence. This
has been proven by simulation results, where ECC(7/8) corrects all transmission
errors when the residue error is random and the BER of the video bitstream is less
than 10-3. However, the performance of packetization not only depends on the
packet size and the residue error conditions, but also depends on the content of the
particular video sequence, because basically the packetization approach relies
heavily on the employment of techniques for error concealment. That is the main
reason why we have not conducted experiments with other video sequences except
the video sequences Akiyo and Salesman.

 The SEC approach has provided a fresh view on both error control and error
resilience coding. Traditionally implemented at the data link layer, error control is
now not only a technique to improve the channel capacity at that layer but is also
useful as an active error resilience tool implemented in the application layer. It
combines several aspects of network operations into a generic and extended
framework, which we can still call “Error Control”, but now the term has a broader
meaning. Under this broader meaning, source coding, channel coding and error
resilience are not separate operations but different aspects of a functionally
integrated error resilient real-time video delivery.

7 Conclusion and Future Work

In this paper, the passive conventional MPEG-4 error resilience tools are challenged
by a simpler, more efficient and effective error resilience approach with second error
correction, which is realized with error correction coding. In this work, ECC is
implemented using punctured convolutional code. Based on the simulation results
from this and previous work [6], ECC is much more beneficial than the passive
error resilience tools in MPEG-4 to combat random or bursty errors in the final
bitstream.

This work has proved the success of the SEC approach by simulation. In
principle each individual technique in SEC is not a revolutionary innovation, but to
apply ECC in the application layer is a new concept. Simply employing a technique
commonly used in the area of channel coding in the data link layer now to the
application layer, the results obtained by simulation are encouraging. At least we
should have a reason to re-examine the error resilience tools in MPEG-4 and other
video coding standards. Are these tools in the standards optimised for practical
utilization? Are they the best tools in terms of effectiveness and efficiency? Adding
redundancy in the video bitstream at the application layer to realize error resilience
in different ways (resynchronisation/packetization versus ECC) results in different
performance outcomes. The results obtained in this work are only by simulation.
The performance of these two different approaches towards error resilience need to
be tested and compared in a field implementation in the real world. Future work
includes extending the SEC scheme to other real-time applications. We hope this
work can open a new direction to the video coding and transmission community in
the field of error resilience coding.

1033

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

 For ECC video, the coding efficiency can be further improved if a dynamic ECC
is designed and implemented for video communication in mobile environments,
where channel conditions and therefore the residue error conditions vary, with
which the ECC rate can follow the change of residue error conditions. The
distribution of error control between first error control and second error control
needs to be optimized. The distribution of the available bandwidth of radio channels
for source coding, first error control and SEC needs to be optimized as well. A
generic rate control algorithm based on these optimum distributions will be more
effective and efficient. More effective first error control schemes including FEC and
ARQ at the data link layer need to be further investigated, taking second error
control at the application layer into consideration.

 To cope with wide range of residue error conditions, the optimum puncturing
patterns of good base convolutional codes need to be further explored. At this stage
the reported highest punctured code rate for base code (171,133) is 16/17 [8], while
the highest punctured code rate for base code (561,752) is 13/14 [3]. The puncturing
pattern of higher code rate of 14/15 15/16, 16/17 17/18, 18/19, etc. needs to be
found for base code (561,752) or other good base codes including those with
constraint length longer than 9, as higher rate codes will make ECC video more
efficient in favorable channel conditions.

This work was supported by the Commonwealth of Australia under the
Cooperative Research Centres program.

References

1. ISO/IEC 14496-2, “Information Technology – Coding of Audio-Visual Objects: Visual”, 2001.
2. A. J. Viterbi, “Convolutional Codes and Their Performance in Communication Systems”, IEEE Trans. on

Comm. Technology, Vol. COM-19, No. 5, October 1971.
3. Y. Yasuda, K. Kashiki and Y. Hirata, “High-Rate Punctured Convolutional Codes for Soft Decision

Viterbi Decoding”, IEEE Trans. on Comm., Vol. Com-32, No. 3, March 1984.
4. Yao Wang, Stephan Wenger, Jiangtao Wen and Aggelos K. Katsaggelos, “Error resilient video coding

techniques”, IEEE Signal Processing Magazine, Vol. 17, No.4, July 2000.
5. B. Du and M. Ghanbari, “ECC video in bursty errors and packet loss”, Proc.PictureCoding Symposium

(PCS 2003), Saint-Malo, France, April 2003.
6. J. Hagenauer and P. Hoher, “A Viterbi algorithm with soft-decision output and its applications”, Proc.

IEEE Global Telecommunications Conf. (GLOBECOM), Dallas, TX, Nov. 1989.
7. ITU-T H.263, “Video coding for low bit rate communication”, 1998.
8. Y. Yasuda, Y. Hirata, K. Nakamura and S. Otani, “Development of variable-rate Viterbi decoder and its

performance characteristic”, Proc. 6th Int. Conf. Digital Satellite Comm., Phoenix, AZ, September 1983.
9. ISO/IEC 11172-2 (MPEG-1), “Information technology-coding of moving picture and associated audio

for digital storage media at up to about 1.5 mbit/s: Part 2 video”, Aug. 1993.
10. ISO/IEC: 13818 (MPEG-2). “Information technology – Generic Coding of Moving Pictures and

Associated Audio Information”.
11. ITU-T (CCITT) Rec. H.261: “Video Codec for Audiovisual Services at p × 64 kbit/s”., March 1993.
12. D. Haccoun and G. Begin, “High-Rate Punctured Convolutional Codes for Viterbi and Sequential

Decoding”, IEEE Trans. Comm., Vol. 37, No. 11, November 1989.
13. Y. Wang and Qin-Fan Zhu, “Error Control and Concealment for Video Communication: A Review”,

Proc. of the IEEE, Vol. 86, No. 5, May 1998.
14. G. David Forney, JR., “Bursty-Correcting Codes for the Classic Bursty Channel”, IEEE Trans. on

Comm. Tech, Vol. COM-19, No. 5, October 1971.

1034

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

5

10

15

20

25

30

35

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Frame Number

P
S

N
R

Transmission-error
free

ECC(11/12) with
BER of 10-4

ECC(11/12) with
BER of 10-3

Packetizatino(600)
with BER of 10-4

Packetization(600)
with BER of 10-3

Figure 2: PSNR for Salesman with random errors.

31

31.5

32

32.5

33

33.5

34

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Frame Number

P
S

N
R

 Error Free

With BER of 10-4

Wiith BER of 10-3

Figure 3: PSNR for Salesman with random errors (zoom in)

10

15

20

25

30

35

40

1 5 9 13 17 21 25 29 33 37 41 45 49

Frame Number

P
S

N
R

Transmission-error free

ECC(11/12) with BER of
10-4

ECC(11/12) with BER of
10-4

Packetization(600) with
BER of 10-4

Packetization(600) with
BER of 10-3

Figure 4: PSNR for Akiyo with random errors

34

35

36

37

38

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Frame Number

P
S

N
R

Error Free

With BER of 10-4

With BER of 10-3

Figure 5: PSNR for Akiyo with random errors (zoom in)

1035

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

Table 1 Bitrate Comparison between Packetization
and ECC with Akiyo

 Table 2 Bitrate Comparison between Packetization
and ECC with Salesman

Frame No ECC (11/12) Packetization (600) Frame Nor ECC(11/12) Packetization (600)
0 46792 50352 0 77896 81168
1 528 488 1 8600 8744
2 664 616 2 14176 14120
3 664 616 3 16320 16256
4 1120 1112 4 15592 15464
5 1048 1040 5 12536 12568
6 1112 1088 6 8888 8872
7 1296 1272 7 8488 8520
8 1536 1552 8 9280 9312
9 1728 1736 9 9272 9328

10 1624 1632 10 10272 10344
11 1448 1472 11 9480 9480
12 2064 2024 12 8472 8456
13 2016 1976 13 9432 9496
14 2880 2912 14 10120 10088
15 4168 4208 15 10200 10080
16 5760 5840 16 8688 8640
17 6984 7000 17 9880 9920
18 7752 7896 18 14472 14320
19 7616 7704 19 16744 16624
20 6824 6880 20 14232 14224
21 6296 6352 21 10712 10904
22 5224 5232 22 10536 10696
23 4344 4368 23 9048 9032
24 4296 4312 24 6440 6440
25 3176 3184 25 5720 5712
26 3096 3104 26 7032 7032
27 3808 3848 27 7976 8024
28 4808 4816 28 6848 6840
29 5496 5512 29 5096 5080
30 6008 6048 30 5928 5912
31 6056 6112 31 6824 6848
32 5160 5176 32 7496 7624
33 4320 4344 33 8280 8416
34 4664 4688 34 11040 11120
35 4976 5008 35 13872 13848
36 5216 5256 36 16000 15920
37 5080 5128 37 14216 14088
38 5280 5272 38 14888 14880
39 5352 5408 39 13384 13416
40 4832 4840 40 11096 11120
41 4808 4872 41 11352 11328
42 4296 4328 42 10728 10648
43 3736 3752 43 10216 10248
44 3784 3784 44 10856 10840
45 4384 4416 45 11488 11600
46 4760 4760 46 9464 9520
47 4984 5040 47 8968 8976
48 5072 5096 48 8360 8432
49 4480 4504 49 7784 7856

Total 243416 247976 Total 584688 588424
Average 4868.32 4959.52 Average 11693.76 11768.48

1036

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

