
TLIB: a Real-time Computer Vision Library for HCI

Sébastien Grange, Terrence Fong, and Charles Baur

Virtual Reality and Active Interfaces (VRAI) Group
Institut de production et robotique, Swiss Federal Institute of Technology (EPFL)

CH-1015 Lausanne, Switzerland
{sebastien.grange, terrence.fong, charles.baur}@epfl.ch

Abstract. A computer vision software library is a key component of vision-based
applications. While there are several existing libraries, most are large and comple or
limited to a particular hardware/platform combination. These factors tend to impede
the development of research applications, especially for non-computer vision experts.
To address this issue, we have developed TLIB, an easy-to-learn, easy-to-use software
library that provides a complete set of real-time computer vision functions, including
image acquisition, 2D/3D image processing, and visualization. In this paper, we
present the motivation for TLIB and its design. We then summarize some of the
applications that have been developed with TLIB, and discuss directions for future
work.

1. Introduction

Since 1999, the EPFL Virtual Reality and Active Interfaces (VRAI) Group has been
developing non-traditional human-computer interfaces in a variety of fields, including
computer assisted surgery and mobile robotics. These interfaces exploit numerous
interaction techniques based on Computer Vision (CV), such as activity monitoring, human
detection and tracking, and gesture recognition. The VRAI group, for example, is part of
the CO-ME network [2], which focuses on the application of information technology to
medical treatment. One area of interest is increasing the use of computer equipment in the
operating room (OR). Because OR’s are crowded environments and have stringent sterility
requirements, traditional computer input devices (i.e., keyboard and mouse) are
problematic. Thus, there is a significant need to develop non-contact (i.e., vision-based)
interaction methods.

Another area we have been investigating is teleoperation interfaces for mobile robots.
Traditional remote driving systems are based on hand-controllers and video displays. Such
systems are error-prone, time consuming to deploy, and difficult to use when joint (i.e.,
human-robot) task performance is required. An alternative is to enable the human to
interact directly with the robot, e.g., communicating commands through hand gestures.
Autonomous robots however, typically have limited processing power. Hence, the vision
system must be efficient and lightweight.

Finally, many of our research projects involve designing and demonstrating application
prototypes. Very often, undergraduate students with limited programming and computer
vision experience contribute to such developments as part of their degree program. For
these students to be productive, it is important to minimize the overhead associated with
learning and implementing fundamental computer vision methods, such as camera
calibration and pixel operators.

1017

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

To address these needs, we have developed the EPFL Tracking LIBrary (TLIB), a

software library for computer vision. TLIB provides a structured, object-oriented
framework for rapid prototyping and development of real-time, computer vision
applications. TLIB incorporates image acquisition, 2D/3D image processing functions,
multiple color spaces, and 2D display routines. TLIB is written in C/C++ and is largely
hardware and operating system independence. In the following sections, we describe the
structure of TLIB and its capabilities. We then discuss how TLIB differs from other
computer vision libraries. Finally, we summarize some of the applications that have been
developed using TLIB, and present on-going and planned improvements.

2. TLIB Overview

2.1 History

In 1999, we developed a collection of real-time, 2D image processing functions called
VisLib. This open-source C library provided color-based methods for object detection and
tracking and was designed primarily for the mobile robot research community. VisLib is
currently distributed and maintained by ActivMedia Robotics, LLC[1]. The success of
Vislib and the need for a richer set of vision-processing routines motivated us to develop a
new library. Our aim was to create a flexible, easy-to-use library that would facilitate
development of Vision-Based Interfaces (VBI). TLIB is the outcome of this development.

2.2 Design principles

Ease-of-use/learning. TLIB’s architecture and interface provides an easy, consistent
and well-documented programming interface. This is made possible by a simple, high-level
API that encapsulates highly-optimized, low-level code.

Efficiency. While real-time computer vision usually requires highly optimized code,
optimization is difficult and time consuming for non-experts. Our objective was to provide
highly tuned functions so that the application programmer need not be concerned with low-
level optimization.

Portability. Significant emphasis was placed on platform-independent design. TLIB’s
API and internal code was explicitly designed to facilitate porting. All non-portable code is
isolated and accessed through portable data structures.

VBI-focused. Library capabilities were chosen to facilitate the development of VBI
applications. As a result, TLIB includes functions for stereo vision, skin-color modeling
and human feature detection and tracking.

2.3 Features

TLIB is intended to enable vision-based human-computer interaction in a variety of
settings. Thus, it supports monocular and stereo cameras, fixed and moving viewing angles,
and a wide range of processing hardware (both embedded and desktop).

Easy-to-use interface. TLIB provides a “simple”, high-level programming interface. All of
TLIB’s high-level methods have been designed with default parameters optimized for
vision-based Human-Computer Interaction (HCI). In practice, this means that these

1018

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

methods can be invoked in most situations using few (or no) parameters. In addition, TLIB
is designed to automatically perform format conversion and run-time sanity checking to
reduce coding errors. For example, the code below shows a complete TLIB program :

Simple image processing with TLIB:capture, Sobel edge detect, and display.

int main (int argc, char **argv){
 tlDigitizerDX *digitizer = new tlDigitizerDX ();
 tlDisplay *window = new tlDisplay ();
 tlImage *image = new tlImage ();
 tlImage *imageEdge = new tlImage ();
 while (tlDisplay::eventQuery() != TL_EXIT) {
 digitizer->grab (image);
 image->edges (imageEdge, TL_EDGES_SOBEL);
 window->display (imageEdge);
 }
}

We have found that a “simple” programming interface provides substantial benefits: it
facilitates code development; it improves code readability; and it aids code understanding.
In our experience, a novice programmer without background in computer vision can be
proficient with TLIB after only 1-2 hours of use.

Real-time. For portability reasons, TLIB relies only on hardware-independent code
optimization to achieve real-time performance. The following is a partial list of the code
optimization techniques used in TLIB, based primarily on guidelines from [16]:

• Loop unrolling
• Invariants in loop processing
• Few, small function arguments
• Function inlining
• Minimizing memory allocation (including heap use)
• Math function approximations

Portable. TLIB is written in ANSI C and C++, and is largely independent of OS-specific
libraries. Thus, TLIB can be ported to other platforms with little effort. The current version
supports both Windows and Linux. The high-level hardware classes can be rewritten easily
for different platforms or for hardware components that do not support generic drivers.
TLIB also comes with a set of example programs that compile transparently on both
Windows and Linux.

Use of multiple sources. TLIB works with a variety of image acquisition hardware and
image formats. The TLIB image formats support several standards and provide a wrapper
for the SRI SVS stereo engine [13]. It is also supports custom image formats from multiple
sources including frame-grabbers, image files, and video files.

2.4 Structure

TLIB library is implemented as a set of optimized ANSI C functions wrapped by higher-
level C++ objects. Figure 1 shows the class structure and inheritance diagram between
TLIB classes.

1019

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

2.4.1 C++ wrappers
Table 1 lists some of the high-level classes available and their functionality. Methods in
each class incorporate data format and geometry consistency checks. This allows the
optimized, low-level functions to execute without safeguards (i.e. under the assumption that
all parameters are valid).

Fig. 1. TLIB image class inheritance diagram (black = base classes, gray = wrapper classes)

Table 1. High-level C++ functions categories

Base classes
tlBlobs Blob extraction and filtering
tlCamera Base class for camera and image sensors
tlDigitizer Image acquisition
tlLocation Location object
tlPixelArray Pixel array data and processing
tlSource Image source base class for TLIB

Derived classes
tlCameraSVS SVS [14] stereo camera class
tlCameraTSAI TSAI [19] camera calibration class
tlColor Color format description class
tlDisplay Display and event management class
tlHist Histogram implementation and tools
tlImage Image data and processing
tlMask Binary mask for image processing routines
tlObject Object description and tracking methods

2.4.2 C functions
C functions are the core of TLIB. They implement optimized, low-level operators on
specific data types. These functions are grouped into the following categories:

Table 2. Low-level C functions categories

Timer functions Platform-independent, high-resolution timing routines
Channel operators Add, remove and switch image channels
Convolution operators Arbitrary kernels (separable and non-separable)
Edges operators Separable extraction methods
Object extraction operators Eegion growing and color filter based extraction
File read/write Various image formats (JPEG, PPM, BMP, etc.)
Filter operators Color and depth filtering

1020

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

Template matching operators SSD operators
Format conversion operators Various color spaces (RGB, HSI, rgb, etc.)
Memory operators Memory allocation and copy
Morphological operators Dilation, erosion, etc.
Pixel operators Addition, subtraction and scaling

3. Related Work

The Computer Vision Homepage [3] cites more than 100 image processing libraries
currently available from academic and commercial sources. Clearly, not all of these
software packages are designed for real-time applications. In fact, fewer than a dozen can
be characterized as “real-time”. Moreover, many libraries are highly operating system
dependent (generally Windows or UNIX only).

OpenCV [12] is the most widely used real-time library in the computer vision
community. OpenCV provides an extensive set of vision algorithms, collected from many
different sources. As such, it is a “large” library, with a complex interface. Furthermore, the
large number of supported features results in significant memory requirements that are not
always appropriate for embedded applications. Thus, while OpenCV is a versatile and
powerful library, it requires time to learn and is too complex for short-term student.

The Microsoft Vision SDK [17] is a real-time image manipulation and analysis library. It
is a low-level library intended primarily to provide a programming foundation for research
applications. The Vision SDK is highly Windows-specific. It relies on Microsoft data types
and interface standards such as VFW (Video For Windows) and DirectX. While it offers an
extensive image definition, the Vision SDK lacks the basic image processing methods
needed for real-time HCI applications

Many CV researchers use Mathworks’ Matlab [15] to develop their algorithms before
moving to traditional programming languages such as C or C++. The major benefit of
Matlab is that it offers an image processing toolbox with many operators. Matlab
functionality is accessible in high-level calls, which makes development rapid and easy.
The primary drawback of Matlab is that it is not designed for real-time or stand-alone
application development. TLIB is designed to offer a high-level interface similar to Matlab
that has real-time performance (though with reduced functionality).

In comparison, to both OpenCV and the Vision SDK, TLIB is designed to support a
limited set of vision applications and has a significantly easier-to-use API. For example,
Table 3 lists the members of a basic image data structure in all three libraries. In our
experience, TLIB’s simplified API greatly facilitates rapid-prototyping, without overly
restricting application flexibility and capability.

Several researchers have developed libraries specifically for vision-based HCI[6][11].
These libraries, however, tend to be application-specific or designed to investigate a
particular software design. As such, these libraries are not suitable for distribution as a CV
tool to a large community of developers.

Table 3. Public image data structures in Microsoft VisSDK, Intel OpenCV, and TLIB

// Microsoft Vision SDK // TLIB
CVisShape m_shapeImage; int width;
EVisPixFmt m_evispixfmt; int height;
CVisShape m_shapeMemBlock; int pixelWidth;
CVisMemBlock m_memblock; tlPixel* pixel;

1021

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

std::string m_strName; tl_format format;
CVisStreamHandler* unsigned long timeStamp;
 m_pVisStreamHandler; __________________________
UINT m_uStreamFrameNum; // OpenCV
int m_cbPixel; int nSize;
int m_cbCol; int ID;
int m_cbRow; int nChannels;
BYTE *m_pbDataOrigin; int alphaChannel;
BYTE *m_pbFirstPixelInRow0; int depth;
HDC m_hdc; char colorModel[4];
HBITMAP m_hbitmapOld; char channelSeq[4];
FILETIME m_filetime; int dataOrder;
bool m_fDirty; int origin;
bool m_fDelayRead; int align;
bool m_fReserved; int width;
bool m_fUseColorMap; int height;
CVisMemBlock struct _IplROI *roi;

m_memblockColorMap; struct _IplImage *maskROI;
int m_imopts; void *imageId;
BYTE *m_pbOriginIliffe; struct _IplTileInfo
BYTE **m_ppbIliffe; *tileInfo;
CVisMemBlockOf<BYTE *> int imageSize;
 m_memblockIliffe; char *imageData;
CVisPropList m_proplist; int widthStep;
 int BorderMode[4];
 int BorderConst[4];
 char *imageDataOrigin;

4. VBI Applications

We have used TLIB to develop numerous Vision-Based Interfaces (VBI) and as an
educational tool in several undergraduate and master’s-level projects. The following
summarizes some of our recent work.

4.1 Human-Oriented Tracking (HOT)

The objective of this project was to create a reusable software architecture to support
vision-based HCI applications. This architecture provides applications with information
about a person’s location, pose and behavior. Such information can then be used to perform
more meaningful interaction. This project was the first to use TLIB and was specifically
designed for “intelligent environment” (or “smart space”) applications [9].

4.1.1 Human Detection and Tracking
In [9], we used TLIB to implement a vision-based people tracker, which creates a
geometric and dynamic model of a person. The tracker uses sensor fusion from two input
modalities, namely color images and stereovision, to locate particular human features. A
model of the human pose is then built from the tracking results, and human movements are
segmented and parameterized.

HOT is designed to detect and track the head and hands of a human user. Figure 2 shows
the output of simple TLIB filters applied to color and depth images, which led to a pre-
processed image that is then used to locate human features. The detection and tracking
algorithms use TLIB blob-processing functions combined with geometric constraints from
depth information. Figure 4 shows the result of the human feature detection, with vectors
indicating segmented hand movements. Overall performance was adequate for several
demonstration applications including a virtual whiteboard and simple robot control [5].

1022

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

Fig. 2. Left to right: normalized color filter, stereo image, and fusion of the two

In [14], we performed arm pose recognition. First, we used a combination of color
filtering and stereo segmentation to detect head position. Then, a kinematic model of the
user’s arms was matched to stereo data using multiple depth histograms. An example of
arm pose tracking is shown in Figure 3.

Fig. 3. Fitting of two-arm model and hand model with stereo data

In [4], a histogram matching technique was used to build a model of the human hand and
fingers in real-time, based on color and stereo segmentation. This method is user-
independent and robust, leading to a recognition accuracy of different static finger poses
greater than 90%. Figure 3 shows the detection and hand model construction for one of the
hand postures.

4.1.2 Activity Monitoring
One way to enhance HCI applications is to monitor the human to ascertain information
about the task he is performing, his current locus of attention, his mood, etc. People use this
information naturally during peer-to-peer interaction, especially during conversation and
joint task performance.

Fig. 4. Human features detection and activity monitoring based on TLIB

In [9], we developed a method to characterize human activity based on a set of pre-

defined, or a priori, parameters. We believe such parametric activity monitoring is more

1023

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

useful for detecting a broad range of activities than task-specific metrics. Using the TLIB
human feature detection and tracking process described above, motion “quantifiers” (e.g.,
relative body displacement) for each tracked feature were computed.

Experiments showed that it was possible to accurately classify general level of physical
activity (sitting, walking, “doing something with his right hand”, etc.) Figure 4 shows an
example of the activity monitor output. Each histogram represents the level of activity for a
particular feature (different colors indicate different time scales).

4.2 Medical Interfaces

We recently developed a computer vision system to replace standard mouse functions with
hand gestures [6]. This application is relevant to the recent introduction of computerized
tools in the operating room, since surgeons must have easy control over computers without
compromising the sterility of the operating field. We are developing such non-contact,
gesture-based user interfaces in collaboration with surgeons at partner hospitals.

The system uses color stereo cameras to detect motion in a 3D workspace and to
interpret hand movements as mouse commands (pointer movement and button presses).
Because the system requires an unobstructed line-of-sight between the cameras and
surgeon, it is most appropriate for minimally invasive surgery (MIS). Figure 5 gives an
overview of the setup used.

Fig. 5. Hand detection and non-contact mouse for medical applications

Detection is performed using color filtering and range processing. Once a hand has been
detected, we apply small-window correlation to track its movement. A Kalman filter is used
to estimate hand velocity and to predict future hand position. Because the search is local,
tracking is not disturbed by the presence of other hands (or objects similar to hands) inside
the workspace. The hand position is then converted into mouse positions on a PC display.

To evaluate the non-contact mouse system, we are now packaging the system for clinical
testing at the Inselspital hospital in Bern, Switzerland. We have chosen to perform all
vision and gesture processing on a laptop and to output mouse commands using a standard
mouse communication protocol to connect our system to a wide range of computers.

4.3 Human-robot interaction

In [18], we developed a system to allow a person to interact with a mobile robot using hand
gestures. To achieve this, the robot needed to detect people and recognize gestures. Given
that the robot has limited processing power, the main difficulty was to design a fast
recognition method that can operate in real-time with minimal resources. Figure 6 shows

1024

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

the robot setup used in our experiments. In particular, we used tilted camera geometry to
limit the portion of the image that needed to be processed. To detect people, the stereo
algorithm only processed a portion of the image. This proved to be a very robust and fast
method for detecting and tracking people.

In order to extract head and hand position in a robust manner, we fused depth and color
information using a depth-sorted histogram method. We then used a pre-defined set of
static gestures to map head and hand position to robot motions (Figure 6).

 “Turn Left” “Stop”

Fig. 6. Robot configuration and static gesture recognition for robot motion control

5. Future Work

We are currently evaluating several new VBI techniques for use in TLIB. These include an
adaptive background object that uses disparity maps to learn the environment and a statistic
color model that can be trained to recognize colors in different image formats.

The development of TLIB is currently being driven by our work in medical UI. A
primary focus is to add tools and techniques for dynamic gesture recognition. Thus, we are
now integrating a HMM-based method for gesture detection and classification [10].
Another possible addition to TLIB is an implementation of the face detection methods
proposed in [20]. This functionality will complement the techniques based on color and
disparity that are already contained in TLIB. In addition, we plan to develop a variety of
techniques to identify and distinguish individual users. In particular, we are considering the
use of color histograms and facial features for user identification. We also have begun
studying the possibility of porting TLIB to a Windows-CE based PDA, such as the Compaq
iPAQ. This would allow us to develop highly portable, personal vision applications.

Finally, we intend to make TLIB publicly available for research in the near future. We
believe that TLIB could prove a valuable open-source tool for learning CV, and for easily
integrating VBI into existing, or new, applications.

6. Conclusion

In this paper, we have presented TLIB, an efficient, easy-to-use software library for real-
time computer vision. TLIB provides a set of optimized routines wrapped in high-level
classes and structure that make it both easy-to-learn and easy-to-use. TLIB has been used in
a range of HCI applications, including smart space environments, non-contact medical
interfaces, and gesture-based robot control. TLIB is highly portable, works with a wide

1025

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

range of hardware, and is well suited for researchers with little prior knowledge of
computer vision. In this respect, TLIB is an ideal introduction to more complex CV
libraries that offer greater functionality, but which are less portable and harder to learn.

7. Acknowledgements

Our thanks to Emilio Casanova, Sébastien Dey, Ryan Garver, Chauncey Graetzel, Mathias
Kölsch, Mikael Krummen, and Christian Wengert for contributing to TLIB. This work was
partially supported by the Swiss National Science Foundation Computer Aided and Image
Guided Medical Interventions (NCCR CO-ME) project.

References

1. ActivMedia Robotics, “VisLib, a high-performance vision processing library”,
http://robots.activmedia.com/vislib

2. Computer Aided and Image Guided Medical Interventions (CO-ME), http://www.co-me.ch/
3. Computer Vision Homepage, http://www-2.cs.cmu.edu/~cil/vision.html
4. Dey, S., Système de reconnaissance de posture de main, VRAI Group Technical Report, Swiss

Federal Institute of Technology, Lausanne, Switzerland, February 2002.
5. Fong, T., Conti, F., Grange, S., and Baur, C., Novel Interfaces for Remote Driving, SPIE

Telemanipulator and Telepresence Technologies VII, Boston, MA, November 2000.
6. François, A. R. J., Medioni, G. G., A Modular Software Architecture for Real-Time Video

Processing, International Conference on Vision Systems, 2001.
7. Graetzel, C., Interface utilisateur basée sur les gestes visuels pour chirurgie, VRAI Group

Technical Report, Swiss Federal Institute of Technology, Lausanne, Switzerland, February 2003.
8. Graetzel, C., Grange, S., Fong, T., and Baur, C., A Non-Contact Mouse for Surgeon-Computer

Interaction, NCCR-COME Research Networking Workshop, Brauwald, Switzerland, August 2003.
9. Grange, S., Vision-based Sensor Fusion for Active Interfaces, Microengineering Diplôme, Swiss

Federal Institute of Technology, Lausanne, Switzerland, March 2000.
10. Grange, S., Casanova, E., Fong, T., and Baur, C., Vision-based Sensor Fusion for Human-

Computer Interaction, IEEE/RSJ International Conference on Intelligent Robots and Systems,
Lausanne, Switzerland, October 2002.

11. Hernández, M., Cabrera, J., Castrillón, M. Domínguez, A., Guerra, C., Isern, J., An Active Vision
System for Detection, Tracking and Recognition, International Conference Vision Systems, 1999.

12. Intel. Open Source Computer Vision Library (OpenCV),
http://www.intel.com/research/mrl/research/opencv

13. Konolige K., Small Vision Systems: Hardware and Implementation, Eighth International
Symposium on Robotics Research, Hayama, Japan, October 1997.

14. Krummen, M., Gesture Recognition based on Stereo Vision, VRAI Group TR, Swiss Federal
Institute of Technology, Lausanne, Switzerland, February 2003.

15. Mathworks, Matlab, http://www.mathworks.com
16. McConnell, S., Code Complete, Microsoft Press, 1993.
17. Microsoft VisionSDK Homepage, http://research.microsoft.com/projects/VisSDK
18. Poell, B. and Wengert, C., Human Oriented Tracking and Mobile Robot Gesture Driving, VRAI

Group TR, Swiss Federal Institute of Technology, Lausanne, Switzerland, February 2002.
19. Tsai, R., An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision,

Computer Vision and Pattern Recognition, Miami Beach, Florida, 1986.
20. Viola, P. and Jones, M., Robust Real-time Object Detection, International Journal of Computer

Vision, 2002.

1026

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

