
Automatic Adaptive Segmentation of Moving Objects 

Based on Spatio-Temporal Information 

Ofer Miller,  Amir Averbuch, and  Yosi Keller

School of Computer Sciences, Tel-Aviv University, 

 Tel-Aviv, 69978, Israel. millero@post.tau.ac.il

Abstract. This paper suggests a novel segmentation algorithm for separating 

moving objects from the background in video sequences without any prior 

information of the sequence nature. We formulate the problem as a connectivity 

analysis of region adjacency graph (RAG) based on temporal information. The 

nodes of the RAG represent homogeneous regions and the edges represent 

temporal information, which is obtained by frames comparison iterations. 

Connectivity analysis of the RAG nodes is performed after each frames 

comparison by a breadth first search (BFS) based algorithm. The set of nodes, 

which achieve maximum weight of theirs surrounding edges are considered as 

moving object. The number of comparisons that are needed for temporal 

information is automatically determined. 

1. Introduction

Segmentation of moving objects (MO) aims to partition an image into physical 

moving objects and static background. The semantics of the moving object definition 

steams from the way human analyzes a video sequence. In general, object refers to a 

meaningful spatial and temporal region of a sequence. Despite the fact that human 

visual system can easily distinguish between moving objects and background, it is 

considered as a challenging problem in the field of video processing.  

The approaches for moving objects segmentation can be broadly grouped into 

three categories. First is the segmentation based motion (as suggested in  1, 2), which 

partitions the scene based on motion information. This information can be generated 

either by direct segmentation of a dense motion fields, or by fitting a parametric 

motion model to regions. The second category is the segmentation based 

motion/change detection and spatial information  3.  The idea is to partitions a scene 

into a small set of regions that are uniform in their spatial and motion properties. 

Those who rely on motion information utilized the fact that the motion boundaries are 

usually coincide with intensity edges. However, those who are based on change 

detection techniques were supported by the fact that it is considerably faster than the 

motion estimation techniques. The third category is the segmentation based spatial 

morphological approaches  4, which relies on parametric motion estimation of regions 

that are formed by a pre-filtering using morphological open-close of reconstruction 

operator.  

The goal of this paper is to present an automatic adaptive algorithm to segment 

moving objects. The proposed method represents the spatial segmentation information 

by nodes of a weighted Region Adjacency Graph (RAG) such that each homogeneous 
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region is assigned to a different node. The edges of the RAG are constructed by 

temporal information. The temporal information is generated by multiple iterations of 

a change detection technique such that each iteration represents the intensity changes 

between a reference frame It and a successive frame It+i, i=1,...,Nt, in the sequence. Nt

depends on the reference frame. Thus, each iteration in the temporal phase provides 

updated weights for the edges in the RAG. Combining the spatial and temporal 

information is done by a Nodes Connectivity Analysis (NCA) algorithm, which is 

applied after each iteration of the temporal phase on an updated RAG. Each NCA 

application extracts a set of candidate nodes that represents the moving object regions 

in correspondence to the current iteration. During the applications of the NCA the 

object's set of nodes is converged into similar groups of nodes and no additional 

iterations are needed. 

This paper is organized as follows. Section 2 gives a short description of the initial 

still segmentation phase. Section 3 describes the temporal information generator. A 

presentation of the spatio-temporal connectivity analysis is given in section 4. Section 

5 describes the connectivity analysis during the temporal iterations. Experimental 

results are given in section 6. 

2. Initial Spatial Segmentation 

Our motivation in performing an initial spatial segmentation is to achieve a minimal 

number of segmented regions while preserving the homogeneity criteria of each 

region. For this purpose a still segmentation algorithm  5 is applied on It, which is the 

frame to extract its MOs. This algorithm combines edge and region-based techniques 

through the morphological algorithm of watersheds. The output is a set of non-

overlapping homogenous regions that compose the partition of the image. These 

partitions are used as the initial data structure in our segmentation algorithm.  

We define Gt=(Vt,Et) to be a region adjacency graph (RAG) of It such that each 

node is denoted by iv , ||,...2,1 tVi , and represents an homogenous region (partition) 

in the segmented frame. Each edge Ejie ),( ||,...2,1, tVji  contains the shared 

boundary pixels (x,y) of 
i

v  and 
j

v  such that jieyx ,},{  for all ji vvyx, .

3. Temporal Information 

Change detection technique, between two consecutive frames, to obtain temporal 

information is a common approach. However, its suffer from two critical drawbacks. 

First, unless the object is sufficiently textured, the interior of the object will remain 

unchanged even if the object has moved. Second, change detection algorithm extracts 

regions of change relatively to the compared frame. These regions include the covered 

background areas while the object extraction approach does not aim at including these 

regions. Hence, temporal information, which is based on two frames without 

considering historical information, might fail to detect objects whose local positions 

are temporally static. To overcome the above while gathering essential information 

about the moving object in the sequence, an accumulated analysis of more than two 

consecutive frames is proposed. 
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Assume It and It+i are registered  6 frames from the same scene where i, i=1,…,Nt,

represents the lag between It and It+i and Nt is the index of the last frame in the scene. 

We propose a Multiple Comparisons (MC) technique, based on change detection  7, to 

compare between the pairs (It,It+1), (It,It+1),…,(It,It+Nt) as the main cue for the object 

movements in It. In other words, the frames It+i, i=1,…,Nt, are compared with a 

reference frame It. The comparison result between each pair is a change detection 

mask (CDM) as shown in Figure 1(d,e). Each CDM will be treated as accumulated 

information from the previous comparisons. The following sections formalizes the 

MC approach. 
(a)                               (b)                            (c) 

(d)                              (e) 

Figure 1: (a),(b) and (c) are frame numbers 43,48,52 taken from the "Tennis" sequence. Image 

(d) is the CDM of images (a) and (b). Image (e) is the CDM of images (a) and (c). As shown, 

the red curves surround the moving object's region in (d) and (e), remain static in it locations. 

The green curves surround the covered regions in (d) and (e), are located in correspondence to 

the object's movement in (b,c). 

3.1 Performing MC on RAG edges.  

Let Evue ),(  be the edge that connects the adjacency nodes (u,v) in the RAG G.

Each edge's pixel, ),(),(

, yxpxl vue

itt , in G is assigned by a binary value (Eq. 1) that 

indicates a change at (x,y) between It and It+i, where (x,y) is the pixel's coordinate: 

else

yx
lkI
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where  is a predefined threshold of the change detection algorithm and ),(ˆ
,

yx
itt

 is 

calculated on a moving squared window ),( yx  of N =16 elements:
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Note that since Eq. (1) operates on the edges in G, which are dominated by high 

gradient pixels, its outcome are considered more reliable  7. Then, each edge, Ee , is 

associated by a Local Change Probability (LCP) that indicates the probability for 

having a change between two frames It and It+i, i=1,…,Nt:

                                      
),(,

),(

,

),(

,
),(

),(

1

vueyx

vue

itt

vue

itt
yxpxl

vue
lcp                           (3) 

for all Gvue ),(  where 10 ),(

,

vue

ittlcp  and 
t

Ni ,...,1 .

3.2 RAG Weighting based MC. 

Each ),(

,

vue

ittlcp  is a change probability of e(u,v) in It relative to It+i without taking into 

consideration the changes of It and It+i-x for all x, t<x<i. Therefore, an mapping of a 

edge ),(

1,

vue

ttlcp , ),(

2,

vue

ttlcp ,…, ),(

,

vue

tNttlcp  results to a single value is needed. We call this value 

Global Change Probability (GCP), and denoted by ),( vue

igcp .

In order to understand how the GCP is computed, we classified the edges in G into 

three different groups. The first is called 'object edges', which belongs to the object's 

region in It. The second is called 'occluded edges', which belongs to the background 

region in It, but at least once, in the sequence It+1, It+2,…, It+Nt, the edge was covered by 

the object's moving path. The third is called 'background edges' which contains all the 

edges that belong to the background region in It and none of the objects in the 

sequence It+1, It+2,…, It+Nt cover these edges. The ),( vue

igcp  of the ith comparisons for all 

Evue ),(  is given by: 

t

i
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where  

t
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tNtt

vue
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def
i NilcplcplcpGM ,...,2,1],...,,max[ ),(
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and k, ik0  is the frame index where a global maximum iGM  of 
),(

1,

vue

ttlcp , ),(

2,

vue

ttlcp ,…, ),(

,

vue

tNttlcp  is achieved.  

This map (Eq. 4) aims to shift the outcome value of the 'occluded edges' towards 

the value of the 'background edges' while preserving the outcome of the 'object edges'. 

Figure 2 shows the edges of a RAG after spatial segmentation was applied on frame 

It, which taken from the "Tennis" sequence in Figure 1. The gray level intensities 

represent the GCP values of the edges that were calculated by Eq. (4) where i=5. As 

shown, each 'object edges' in the RAG (pointed by the red arrow) has greater 

intensities than the rest of the edges in the frame. The 'occluded edges', that are 

located in the surrounded area of the object (pointed by the green arrow), have greater 

intensities than the 'background edges' but less than the 'object edges'. Note that 

according to the GCP mapping methodology, the distinction (in gray level values) 

between 'object edges' and 'occluded edges' becomes clearer as long as the object is 
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moving in the sequence. However, distinguish between background and occluded 

edges is irrelevant for the segmentation process since, according to the MO definition, 

both have to be classified as the same segment. 

Figure 2: Illustration of RAG edges of one frame taken from the "Tennis" video sequence, 

after assigning ),( vue

igcp  weight for all Evue ),(  where i=5 comparisons.  

After each edge is assigned by a temporal information, a temporal information 

representation of the nodes in G is needed for the a connectivity analysis between the 

temporal and the spatial information (section 4). For that purpose, each node, denoted 

by v , is associated with a v

igcp  weight, which indicates its GCP after i iterative 

comparisons. The v

igcp  is based on weighted mean of the edges the surround v.

Therefore, for all Vu j  that exist ),( juve , the GCP of v is given by:  

                                            

ju

j

vjue

i

v

def
v
i vuegcp

s
gcp ),(

1 ),(
                               (5)

where uj is the set of neighboring nodes of v, connected by e(uj,v) and sv is the set of 

boundary pixels of v

4. Connectivity Analysis of Spatio-Temporal Information

The nodes connectivity analysis (NCA) operates on the RAG Gt=(Vt,Et) (section 2), 

weighted by v

igcp  values to each node v for i temporal comparisons i=1,…,Nt. The 

main purpose is to extract the sets of connected nodes, which represent the MO in It.

The algorithm is based on the assumption that MO is represented by a set of 

connected nodes that produces the highest GCP weight relative to its neighbors. 

4.1. Notation and Definitions 

Each v in Gt is associated with a v

igcp  weight where 100,...,1,0v

i
gcp . Therefore, 

we can handle the graph 
iii

EVG ,  as a topologic surface, which is partitioned into 

101 levels. Each level is denoted by p. In each level we consider only the nodes Vv

that satisfy pgcpv

i  and all the edges ve  that connect these nodes. 
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Definition 4.1 Given a graph EVG , . A set of connected nodes in Gi at level p,

denoted by )( p

kSV vk ,...,1 , exists if there is a connected path of edges between 

each pair of nodes and each node satisfies pgcpv

i .

Assume )1( p

kSV  and )2( p

lSV vlk ,...,1,  are two sets of connected nodes in Gi

such that lk  and 
21

pp . We demand that )2()1( p

l

p

k SVSV . In addition, for two 

different levels 
1

p  and 
2

p  such that 
21

pp , either )2()1( p

l

p

k SVSV  or 
)2()1( p

l

p

k SVSV  is satisfied. If )()( 21 p

l

p

k
SVSV  then we say that the set )2( p

lSV  is a 

descendant of )1( p

kSV . Def. 4.2 defines the process of contracting the edge ),( uve  in Gi

which creates the set )(P

kSV  at level p. This process is denoted by ),(/ uveG .

Definition 4.2 Given a graph EVG ,  and an edge Evue ),( . The edge 

contraction of ),( vue  in G creates a new graph EVG ,  where uvvuVV ,

and ),(),( uvxvueEE  if EvxorEux ),(),( and vux , . uv  is a new node 

that is added to the graph.  

In addition to def. 4.2, if Eux ),(  and Evx ),(  then we consider only one edge of 

),( xuve , and recalculate its GCP value by Eq.(6). Otherwise, if Eux ),(  or Evx ),(

then either ),( uxe

tgcp  or ),( vxe

tgcp  is assigned, respectively. 

                          t

vxe

i

uxe

iuvxe

i Ni
vxeuxe

gcpvxegcpuxe
gcp ,...,1

),(),(

),(),( ),(),(

),( .              (6)

4.2. Nodes Connectivity Analysis algorithm  

The goal of the NCA is to extract the sets of connected nodes )( p

kSV  that have local 

GCP maximum relative to its neighbors (See Figure 2). 

The first NCA iteration starts with p=100 and contracts (def. 4.2) all the connected 

nodes that satisfy pgcpv

i . The obtained sets )( p

kSV , vk ,...,1  will be considered as 

initial objects candidates, denoted by )( p

kobj . This is needed to create ancestor sets for 

the next iterative contractions. Then, the weights v

igcp  of the contracted nodes have to 

be modified according to the new structure of Gi. For example, a set of connected 

nodes )( p

kSV  appeared at level p, will be considered as a single node v  with a 

corresponding v

igcp  weight. The algorithm repeats this process for p=99. Now the 

contraction process may either adds new nodes to the previous sets )100(

kSV  (by 

contracting )100(

kSV  with nodes that satisfy 99v

igcp ) or by creating new sets of 
)99(

kSV . After all the nodes weights were updated at the end of each iteration, each set 

is being checked whether it satisfies the following definition in order to be considered 

as an object candidate. 
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Definition 4.3 Assume that )~( p

kSV  that appeared at level p~  is the descendant set of 
)( p

kSV  such that  )()~( p

k

p

k SVSV  and pp~ . The set )( p

kSV  is an object candidate at 

level p if the following are satisfied: I. 
)()

~
( P

k
SV

i

P
k

SV

i gcpgcp   II.  
)

~
(P
k

SV

igcp .

where v

igcp  is computed by Eq. (5), the set )( p

kSV  is considered as a single node v, and 

 is a pre-defined constant to prevents object candidates, which have low GCP 

weights, to consume unnecessary storage 

A set )( p

kSV vk ,...,1  that satisfies definition 4.3, will be called object 

candidate, and denote as )( p

kobj , vk ,...,1 . Each )~( p

kobj  will constitutes a reference 

ancestor for future considerations in level p pp~  to satisfy the object definition 4.3. 

The algorithm is terminated when the RAG is composed of a single component. The 

remaining object candidates are the MO segments for the current ith temporal 

comparison. 

4.3  Step-by-Step Illustrative Implementation of NCA. 

Figure 3 illustrates, step-by-step, the NCA algorithm. The initial RAG, obtained 

by the application of a spatial segmentation and weighted by ten MC iterations. The 

number inside each node v indicates its weight v

igcp . The blue nodes represent the 

sets of nodes: )46(

3

)50(

3

)57(

3

)75(

1 ,,, SVSVSVSV . The red nodes represent the sets: 
)57(

3

)70(

3

)75(

2

)90(

1 ,,, objobjobjobj . The red nodes with the bold border are the initial candidate 

objects which first appeared in levels p=83, p=75 and p=57. A red edge indicates that 

it will be contracted in the next iteration. This example consists of six steps. 

Image 3a presents the initial level of the algorithm. Its red node, which appeared 

at level p=83, is considered as an object candidate due to its first appearance (see def. 

4.3). Then, in image 3b, the blue node )75(

1SV  represents the contraction of the red 

edge (from 3a). Its updated weight 77
)75(

1
SV

igcp   (3b) is less than its ancestor 

83
)90(

1
SV

igcp   (shown in 3a), which means that this set does not satisfy the object def. 

4.3. Therefore, it is considered as )75(

1SV  and not as )75(

1obj . However, its descendant 

set in the next level (shown in 3c), satisfies the object def. 4.3 since 
)75(

1
)70(

3
SV

i

SV

i gcpgcp . Thus, this set is considered now as an object candidate )70(

3obj , and 

satisfies def. 4.3 till the completion of all the NCA iterations (3f shows the last 

iteration where the graph is composed of a single set )46(

3
SV ) .Therefore it is 

considered as a single MO in this graph. 

In this example there are three initial object candidates )57(

3

)75(

3

)90(

1 ,, SVSVSV . Any 

descendant from the initial candidates )57(

3SV  in image 3d did not satisfy def. 4.3 in all 

the successive iterations. Therefore, it is not considered as an MO. In contrast, the two 

other initial candidates )90(

1SV  and )75(

3SV  ( in 3a and 3b) satisfy the object definition 

by merging with other sets of nodes, and thus, they are part of the MO.
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In addition, Figure 4 shows the 
)( p

k
SV

igcp  values of three initial candidates 
)75(

3

)90(

1 ,SVSV  and )57(

3SV  as a function of the number of iterations. The red, blue and 

green lines represent the 
)( p

k
SV

igcp  values during the NCA iterations of 

)57(

3

)75(

3

)90(

1
,, SVSVSV , respectively. The union of the red and blue lines represents the 

union of its corresponding nodes as shown in (3c). This union reached a GM for 
)( p

k
SV

igcp , 100,...,1,0p . The green line had no maximal weight satisfying def 4.3. Thus, 

it is not considered as )( p

kobj  at any level p.

              (a)                                                 (b)                                              (c) 

                

              (d)                                                    (e)                                         (f) 

Figure 3: Each graph represents a single iteration of the NCA algorithm. The blue nodes are 

the contracted set of connected nodes. The red node in (c), which appeared at p-level=70,

reached a maximum weight among all the p levels and satisfies the object definition 4.3.  

Figure 4: The GCP values of the three initial object candidates. The red, blue and green lines 

represent the initial candidate nodes from 3a, 3b and 3d, respectively.  The x-axis is the number 

of NCA iterations and the y-axis is the node weights. The dashed black line points to the GM of 

the two united sets of nodes. 
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5. NCA in Parallel to Temporal Iteration  

Each extracted set by the NCA application are corresponded to Gi that are weighed 

after i iterations i=1,…,Nt. Therefore, we have to determine the minimal number of Nt

iterations in which the extracted sets accurately represent the MOs in It.

Base on the MC methodology, we anticipate that in a certain iteration of the 

temporal comparisons, say x, the moving object set of nodes will remain similar in its 

shape to every NCA application where i>x. Thus, we suggest to compare each object 

set, extracted by the NCA in the ith temporal comparison, with its overlapped set, 

extracted in the previous (i-1)th iteration. Object set, whose shapes remain similar for 

consecutive of NCA applications, are considered as reliable MO representation, and 

no additional temporal comparisons are required.  

In order to determine shape similarity between obji and obji-1, extracted by the ith

and (i-1)th NCA applications, we define a distance measure, denoted as D( obji, obji-1),

between digital curves of the two objects boundaries obji and obji-1.   

Definition 5.1 A distance of a given pixel 
ii

obja  from a curve 1iobj , denoted by 

),(
1ii

objad , is the distance between ia  and the nearest point to 
1i

a  in 1iobj .

Definition 5.2 A distance of a given curve iobj  from the curve 
1i

obj , denoted by 

),(
1ii

objobjd , is the sum of square distances between the pixels of 
i

obj  and 
1i

obj .

In addition, the distance between two curves is calculated by the following: 

                                      
iobj

k

ik

i

def

ii
objad

obj
objobjd

1

2

11
),(

1
),(                                (7)

where 
i

obj  is the size of 
i

obj . However, the distance of ),(
1ii

objobjd  is not 

necessarily equal to the distance ),(
1 ii

objobjd , therefore, the ),(
1iii

objobjD  is: 

given by:  

                              )},(),,(max{),(
111 iiiiiii

objobjdobjobjdobjobjD                    (8)

We say that obji  is considered "stabilize" if the distance between extracted 

objects in 1,...,2,1 i  NCA applications is getting smaller. Thus, a given obji,

which satisfies the following for  NCA iterations:

                                 ),(),(
2111

,

jjjjjj

def
i

obj
objobjDobjobjDstbl

j
                     (9) 

where j= +1, +2,…,i is a stabilize object.  

The "stability" calculation (Eq.9) is examined per NCA iteration for each 

extracted object. If i

jobjstbl , 1,...,2,1 i ,
t

Ni ,...,2,1  we classified this object as 

stable and no additional NCA iterations are needed. We considered a stable object as 

an accurate representation of the MO in It.
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6. Experimental Result 

Figure 5 and Figure 6 present the segmentation result of single frame taken from the 

"Tennis" and the "Silence" video sequence, respectively . Each image (a)-(e) presents 

the output (marked by a yellow curve) of a single NCA application. The red curves 

are the boundaries of the spatial segmentation result as obtained from it application on 

the reference frame (5a) and (6a). In both examples only five iterations were required 

to obtain an accurate representation of the MO in the scene.  

          (a)                           (b)                             (c)                         (d)                           (e) 

Figure 5: Temporal results of the MO segmentation algorithm applied on frame 45 from the 

"Tennis " video. (a) is the output of the first iteration and (e) is the final segmentation result. 

          (a)                           (b)                             (c)                         (d)                           (e) 

Figure 6: Temporal results of the MO segmentation algorithm, applied on frame 50 from the 

"Silence" video. (a) is the output of the first iteration and (e) is the final segmentation result. 
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