Proc. VIlth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

A Model Set Based Object Segmentation M ethod Using
L evel Set Approach

Xun Wang, Zhigang Peng, Feng Gao, William G. Wee

Department of Electrical and Computer Engineering & Computer Science, University of
Cincinnati, Cincinnati, OH 45221, USA

Abstract. A novel approach for model set based object segmentation is de-
scribed. The proposed method enables the using of a model set to guide the ob-
ject segmentation. The object shape model selection and segmentation based
on the selected model is formulated as an integrated process of constrained
contour energy minimization. The solution derived from this formulation pro-
duces an integrated searching process consisting of two alternating procedures
of contour evolution and contour model fitting. The process stops at a final
contour together with a distance measure to the selected model contour for
model selection. The resulting contour with the smallest distance is then se-
lected as the final result. Model selection and segmentation results are finally
reported.
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1 Introduction

Mode based object segmentation is an important issue in computer vision [2]
[9]. A limitation for model based object segmentation isthat it often requires a con-
dition that a statistical shape modd [2] [9] that can well represent the shape of target
object is given. In the paper, we are concerned with an object segmentation problem
using a model set consisting of more than one shape model. Specifically, we are
concerned with a condition that a set of shape models, one of which well represents
the shape of target object, is given to assist object segmentation. We will list a few
scenarios that lead to the conditions:

Consider that we are segmenting objects using model based segmentation meth-
ods [9]. To do so, a statistical shape model, which is based on the whole training set
of object shape instances, is required. However, due to the diversity of specific target
objects, the statistical shape model may not represent the shape of a single target
object well. With our approach, we can construct an object shape model set, in which
each shape modd represents a subset of object instances with similar shapes. The
object segmentation is then to select the shape model most similar to the object to
guide object segmentation. Model set based object segmentation also has a potential
of working with other object recognition techniques [1] [8] to improve their recogni-
tion accuracy. Though object recognition techniques are rather effective in recogniz-
ing a large number of objects, they may have difficulties in accurately recognizing
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objects with reflectance, shadings, occlusions, and noises [8]. Since the model selec-
tion can be viewed as a process of object recognition and it is more robust to most
segmentation difficulties, modd set segmentation can potentially improve the recog-
nition accuracy in these cases.

In the paper, we propose a model set based object segmentation method. We
formulate the selection of object shape model and object segmentation based on the
selected model as a constrained contour energy minimization problem [7]. Algebraic
contour distance fitting error, algebraic geometric invariants distance measure be-
tween the contour and shape model using Mahalanobis distance [5], and object inte-
rior features are incorporated directly or as constraints to the contour energy minimi-
zation formulation. The solution derived from this formulation produces an inte-
grated searching process consisting of two alternating procedures of contour evolu-
tion and contour model fitting. The process stops at a final contour together with a
distance measure to the selected modd contour for model selection. The resulting
contour with the smallest distance is then selected asthe final result. Model selection
and segmentation results are encouraging.

2. Overview of Approach

The problem of model set based object segmentation is composed of two components:
1) shape model set construction 2) shape model selection and object segmentation
based on the selected shape modd.

To build shape model set, we select a few object instances for each shape modd.
To efficiently reflect the differences between the shape modds, we sdect implicit
polynomial shape representation approach [1] [4] [5]. The probahility function of
each parameters of the polynomial shape representation can then be defined. In the
paper, to facilitate model set construction, we take only one object instance to build
each shape modd, which will be discussed in Section 3.

When the shape model set is built, a model based object segmentation method
guided by the polynomial shape modd is then applied for each modd. The method is
amode based deformable contour within a framework of constrained contour energy
minimization [7]. The solution derived from the method produces two alternating
processes of contour evolution and contour model fitting. The contour evolution is
generaly driven by the information of image gradient, object interior features, and
estimated shape model. The contour model fitting dynamically combines the current
contour with the shape model to generate an estimated shape model contour, which
isthen used in contour evolution. The algorithm stops at a resulting contour together
with a distance measure to the selected moded contour for model selection. We select
the resulting contour with the smallest distance to one of the shape models as the
final result and the shape model as what target object belongs. The philosophy can be
explained as “shape model competition”, in which each shape modd in the model set
competes to guide the object segmentation or shape formation, and the shape model
that wins the competition, which is evaluated by the distance to the resulting contour,
is declared as the winner, and its associated contour is the resulting contour.
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3. Shape Model Construction

To build shape model set, we choose polynomial shape representation method and
then construct shape models using the polynomial shape representation.

3.1 Polynomial Shape Representation and Invariant Feature Selection of a Close
Contour

Let f(x,y) beapolynomial of degreenin (x,y) given by
FO0Y)= Y aXy =ag +apX+ayy+apX’ +ay+A +a,y" = XA (1)

0si, j
0s<i+j<n

where A=[a, a, a, A a,,] is the coefficient vector consisting of | entries, and
X= [1xyx2 XyA y”]T is also an |-vector. A close contour can be implicitly defined
as,
Z,(M={xy): f(xy)=0} )
This z, (A) can also be denoted as C(q) and be represented by a finite contour
point set T, ={(x,y,):i =L2A m<eo}. An algebraic fitting error measure of this
point set T}, to Z (A) can be defined as

£(Ty) = 3 ds(X, ). 2, (A) ©

where dist((x,Y,),Z; (A) is the distance from the point (x,,y,)e I, to Z,(A),

and ¢ isthe average square distance. It can be shown that as m — -, Eg. (3) can be
written as the continuous form,

£(C(a) = [ dist*(x(a), y(). Z, (A))dly Q)
Asshown in [1] [4], minimizing EQ. (3) can be approximated by minimizing,
S;:zm:fz(xi,yi) (5)

Since a direct solution to minimizing ¢; is easily trapped at local minima, the 3L
fitting algorithm of [4] is used by adding two additional termsto g; resulting in g7

as
£ =€ +E, +E, (6)
. m, m_,
Wthe, = SlEw) - @d e, = 3 [f(x y)+cf wheree, ande,
(%3 (H3eT

are the two additional fitting error terms (similar to Eq. (5)) for an outside point set
I, totheouter contour __Z, ={(x,y): f(x,y)=—r} and an inside point set T, to

theinner contour _Z, ={(x,y): f(x,y) = r}, respectively, satisfying,
dist((x,y).Z,(A)=7  if(x,y)el o, (7
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with m_ being the number of points from T, and m_ being the number of points
from I . Thevaue ¢ of Eq. (6) can also be expressed in matrix notation as

” 2
& =X, A-b| €)
X(T,)
where x | x(r,) | b=[-7,A -70A 0,7,A 7], X, isan m, by | matrix
X(T;)

with the size, m. =m_, +m+m,. X(T",), X(I,), and X(I',) are matrices con-
taining m_, m, and m_ points of XT's from I, T,,and T, respectively, with
m_, and m_ points being uniformly spaced (preferably) on T' . and T, and T, the
finite contour point sets as noted earlier. Likewise, b is an m, vector having first
m_, entries of —7 to be followed by m entries of 0, and the last m_ entries of 7.
Furthermore, shape features {al,az, A ,ak} invariant under rotational transforma-
tions are derived from A [6] as,
o, =F(A);i=12A K )

where k:%(n+l)(n+ 2)—1 isthe total number of rotational invariant features, with

2 2
qn}qj linear and quadratic invariants [6], and k_qn}LlJ relative angle
2 2

invariants, and n is the highest order of the polynomia (see Eq. (1)). Let
a=|a,,0,A e ] - The similarity between two shapes represented by shape fea-
tures ¢ from A and model shape features o from the model coefficient vector A’
can be measured by the Mahalanobis distance of
Dy, = (@-a) y' (@-a) (10)
where y is the information matrix of the model shape o [6]. Approximated by
thefirst order Taylor series expansion around A", Eq. (10) can be written as,
Dy =(A-A) QA )(A-A) (11)
with Q(A)=F'(A) w'F'(A).
D,, is a shape distance measure between two contours using rotational invariant

features after a proper position trandation and size normalization operation. It will
be shown in Section 4 that D,, can be used both as a guide to the progress of the

contour marching operation in gaining shape matching and ultimately as a measure
for the shape mode sdection decision. Notice that both contours have to trandate
their centersto the origin and size normalized before D,, is computed.

3.2 Shape Model Construction
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Figure 1 The images of row a are initial images (Bananal, Banana2, Leafl, Leaf2).
The images of row b are the corresponding manually drawn model contours. The 6"
degree implicit polynomial fitting results are presented on the row c. The row d images
are the clean up fitting results

To congtruct shape modd, we first manually draw a model contours, then fit an im-
plicit polynomial function according to Eq. (8), and finally sdect the shape features
according to Eqg. (9). Let k = 27 in Eq. (9) be the total number of invariant shape
features of a 6" order polynomia with 1= 28. The model information matrix y is

the inverse of a covariance matrix of o~ which can be estimated by sampling a Gaus-
sian perturbation of the contour mode [6]. Here, a sample size of 150 is used on a
standard deviation of 0.01 perturbation. At a given iteration, both the current de-
formed contour and the mode contour have to be trandated to the same center with
equal size before using Eq. (11) to compute D,, [1].

After we construct the shape models, the distinguished ability of the 6" order
polynomial implicit representations through Mahalanobis distance has to be evalu-
ated before any applications shown in Table 1.

Tablel. The Mahaanobis distance between the models. Here, Bananal*, Ba-
nana2*, Leaf1*, Leaf2* isthe original shapes after rotation of 45 degree.

Ba- Ba- Leaf1* Leaf2*
nanal* nanaz*
Ba- 5.6 17.6 91.8 56.7
nanal
Ba- 15.2 3.3 45.0 58.2
nana2
Leafl 78.4 65.7 7.8 68.4
Leaf2 35.4 335 28.1 6.2

4. Moddl Set Based Object Segmentation

In this section, a model set based object segmentation approach is formulated. As
discussed in Section 4.1, invariant features are used to define a distance between an
input contour and model contour using Mahalanobis distance. This minimum dis-
tance measure is used as the shape model selection as the class belonging of an ex-
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tracted contour to one of G models. For ease of presentation, asingle model z, (A’)

contour with rotational invariant features o = oy (A') is considered, and a complete

modd selection will be presented in the applicationsin Section 5.
Let C(q,t) be a deforming close contour with interior Qc(t) at time t and pa-

rameter g, its polynomial representation be the coefficient vector A.

Z,(A={xy): f(xy)=X"A=0}
The coefficient vector A is determined as discussed in Section 3. An agebraic fitting
error measure between the two sets, C(q,t) and Z, (A), can be shown as

1
[ dist*(x(a,1), y(a,1), Z, (A)dq < T, (12)

where (x(q,t), y(g,t)) € C(q,t), and T, >0 isathreshold.

Our problem isto find C(q,t) such that

E(C(a.1) =w §g(VI(Ca ))ds+1-w)(e-a) p, (@—a')0<w<1

Clan
(13)
is minimized subject to the following constraints:
i) D(x,y) =T, if (X, y)e Qct) (14)
) [[dist?(x(a.t), y(a.1).Z, (A)da <, (15)

where sisthearc length, gisthe contour parameter, | (x,y) istheimage brightness
1 . .
a (xy)and g(vic@t))=——o>= . VI(C(gt)) is the gradient of
V@M= G caar
I(x,y)With (x,y)on C(q,t), D(x,y) is any function characterizing the interior of
expected target contour. Specific description of D(x,y) will be provided later. T, is

a positive threshold.
To solve the problem, we take a Lagrange approach by minimizing

L, (a0, A
L,(C(@t), A) =w §g(VI(C@)ds+ Q- wia-a) y’ @-a)]

C(axt)

~ A[[[D(x ) -T, Jaxdy+ 4, Jdist?(x(a.), y(a,1). Z, (8) ~T; b (16)

where 4,4, > 0.
Since wzﬁaﬁﬁj% (16') a direct computation is compli-
ot dC ot OJA ot

cated and unnecessary. Here, we use a practical approach of partitioning the compu-
tation into two components. Each component is optimized while holding other com-
ponent unchanged. Our first step is to hold A in Eq. (16’) constant and deform
C(g,t). We consider alevel set surface D, (x,Y),
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dist®((x,y), Z, (A) if (x,y)isinsideZ, (A)
Di(xy)=40 if (x,y)e Z, (A 17)
—dist’((x,¥),Z, (A)) if (x,y)isoutside Z, (A)

It can be shown that minimizing Eq. (16) isequi@lent to m@mizing
L, (C(aD.A)=w §g(VI (C@an)ds+ Q-wla-a) v @-a)|

c(at)
-4 [[(Otxy) —R)dxdy—ﬂ{ []Dy (% y)dxdy-T, } (18)
According toﬂ[c7(i), by minimizing Eq. (195.:»;,) a curve evolution formula can be produced
- 9Ca.y) _

9 _[11p(x y)-T,1+ wha(vi) -wvg- D+ 2.0, )R (9

wherek isthe curvature of C(q, t).
Our next step isto hold C(q,t) constant and minimize Eq. (16') by adjusting A. In

an effort to compute aaLg , We return to the finite point set representations of both
A
searched contour C(g,t) and model contour.

Setting Bj =0, we have
oA
A= [XI Xy + Q- WQA)[a-wQ(A)A + X1 b]  (20)

Noticethat 4, = m. 4, where m, isthetotal number of pointsin T, I, and T _.
Discussion: It is easy to see that the minimization of L_(C(q,t), A) is composed of
two steps. The first step is the deformation of C(q,t) driven by the curve evolution
formula of Eg. (19) using an initial Z, (A). In this deformation, the contour point
velocity is determined by the combined effect of region features [D(x,y) -T, |, con-
tour gradient function {Wkg (VI ‘)—W(Vg-ﬁ)}, and shape fitting measure,
ID, (x,y)-T, |, between C(q,t) and Z, (A). The second step is the recal culation of
“A’ using Eqg. (20). In here, the resulting “A” is to produce a new Z (A) that is
closeto both C(qg,t) and Z, (A"). Then asthe velocity in Eq. (19) is very small, and
“A” in Eg. (20) remains the same with very little change from the earlier iteration
value, the agorithm converges. Notice that the shape fitting measure ¢, is only
trying to deform C(q,t) toward Z (A) without any size consideration. Therefore, if
a larger weighting factor 4,0or A,' is used, it can impede the speed of outward
marching of C(q,t) and lower the convergent speed.
For our implementation in the next section, we need to specify D(x, y) letting
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1 1 y)-1o|

D(X,y)=———e ¢
Y 1+VG*1[?

where \VG* I \ is the absolute value of the gradient of 1(x, y) smoothed by a Gaus-
dan filter N0, 5,%). |, isthe average intensity inside target boundary.

5. Algorithm and Experiments

The senditivities between 4; and w settings in Eq. (20) are of importance to our

computation of “ A”. With the modd and object contour shown in Figures 2.1a and
2.1b, respectively, results are shown in Figure 2.2ato 2.2f using different 4; values.

By holding w constant at 0.5, with large 4, > 1, theresulting “A” and their respec-
tive contours are closer to the object and with the extreme case of 1) =10, theinflu-
ence of the model does not exist, and with much small 1) << 0.01, they are closer to
the model in the extreme case with little influence from the image data. A setting of
A, =0.001 is sdlected, and it is selected such that a balance influence between the
object contour and the modd contour is achieved. This setting will be dependent
upon the shape configuration of selected model. The parameters needed to be set for
theEq. (19) are 0, 4, 4,, and w.

Segmentation algorithm:

Step 1. Sdect a5 by 5 contour inside the target object asinitial contour C(q,0). Keep
I, =189 congtant, where [ @9 is the average intensity inside the initial contour
C(q,0). With C(q,0) and the given shape model, compute“A” according to Eq. (20).
Step 2. Evolve contour C(q,t) by solving Eq. (19) using narrow band level set
method for | iterations. Stop when the difference between two successive iterationsis
insignificant or a maximum of iteration number n_ has been reached.

Step 3. With the contour C(q,t) given by Eq. (19), compute “A”" according to Eq.
(20).

Step 4. Update 1, =15@9, where [S99 is the average intensity inside contour C(q,
t). Goto Step 2.

These are two parts to our experiment. Partl isto illustrate the segmentation ca-
pability of the algorithm. Here, we use the leaf with an “X1” mark as in the mode
shown in Figure 3(a). The final segmentation result of leaf with a “Y12" mark in
Figure 3(a) is shown in Figure 3(b) with an initial inside contour. Figure 3(c) shows
the resulting segmentation contour using the same velocity equation of Eq (19) with
A, =0, i.e, there is no model. Similarly, using “X2” of Figure 3(d) as model pro-
vides a segmentation result of “Y22"on Figure 3(€). As for the illustration of the
model selection result, we compute the D, value of 4 leaves data, “Y11” and “Y12”

for class 1 in Figure 3(a), and “Y21” and “Y22" for class 2 in Figure 3(a). The result-
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ing D,, using different models deforming targets and classification decisions are

shown in Table 2.
We also applied the method for extracting the external boundaries of intracrania
in MRI brain images as shown in Figure 4.

Table2 Model Selection Result

Data(Deforming D Class Decision
Mode) M

Vit (Moddd | 207 Class1
V12 (o2 | 380 Class1
e
TZ W) |29 [ Gz

7. Conclusion

We have introduced a model set based object segmentation method based on the
framework of constrained contour energy minimization. With the usage of polyno-
mial shape representation, the algorithm can sdect from a shape modd st the
proper object model to guide object segmentation.
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Figure 2 The new generated contour when using different 3 ,and w

Figure 3 (a) Original image for segmentation (b) The segmenta-
tion results of (@) using shape model (c) The segmentation resulting
without shape model. (d) Another original image. (€) Segmentation
results of (d).

Figure 4 (a) Original MRI brain image
(b) Extracted intracranial contour



