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Abstract. A novel approach for model set based object segmentation is de-
scribed. The proposed method enables the using of a model set to guide the ob-
ject segmentation. The object shape model selection and segmentation based 
on the selected model is formulated as an integrated process of constrained 
contour energy minimization. The solution derived from this formulation pro-
duces an integrated searching process consisting of two alternating procedures 
of contour evolution and contour model fitting. The process stops at a final 
contour together with a distance measure to the selected model contour for 
model selection. The resulting contour with the smallest distance is then se-
lected as the final result. Model selection and segmentation results are finally 
reported.  
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1   Introduction 

Model based object segmentation is an important issue in computer vision [2] 
[9].  A limitation for model based object segmentation is that it often requires a con-
dition that a statistical shape model [2] [9] that can well represent the shape of target 
object is given. In the paper, we are concerned with an object segmentation problem 
using a model set consisting of more than one shape model. Specifically, we are 
concerned with a condition that a set of shape models, one of which well represents 
the shape of target object, is given to assist object segmentation. We will list a few 
scenarios that lead to the conditions: 

Consider that we are segmenting objects using model based segmentation meth-
ods [9]. To do so, a statistical shape model, which is based on the whole training set 
of object shape instances, is required. However, due to the diversity of specific target 
objects, the statistical shape model may not represent the shape of a single target 
object well. With our approach, we can construct an object shape model set, in which 
each shape model represents a subset of object instances with similar shapes. The 
object segmentation is then to select the shape model most similar to the object to 
guide object segmentation. Model set based object segmentation also has a potential 
of working with other object recognition techniques [1] [8] to improve their recogni-
tion accuracy. Though object recognition techniques are rather effective in recogniz-
ing a large number of objects, they may have difficulties in accurately recognizing 
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objects with reflectance, shadings, occlusions, and noises [8]. Since the model selec-
tion can be viewed as a process of object recognition and it is more robust to most 
segmentation difficulties, model set segmentation can potentially improve the recog-
nition accuracy in these cases. 

In the paper, we propose a model set based object segmentation method. We 
formulate the selection of object shape model and object segmentation based on the 
selected model as a constrained contour energy minimization problem [7]. Algebraic 
contour distance fitting error, algebraic geometric invariants distance measure be-
tween the contour and shape model using Mahalanobis distance [5], and object inte-
rior features are incorporated directly or as constraints to the contour energy minimi-
zation formulation. The solution derived from this formulation produces an inte-
grated searching process consisting of two alternating procedures of contour evolu-
tion and contour model fitting. The process stops at a final contour together with a 
distance measure to the selected model contour for model selection. The resulting 
contour with the smallest distance is then selected as the final result. Model selection 
and segmentation results are encouraging.  

2. Overview of Approach 

The problem of model set based object segmentation is composed of two components: 
1) shape model set construction 2) shape model selection and object segmentation 
based on the selected shape model.  

To build shape model set, we select a few object instances for each shape model. 
To efficiently reflect the differences between the shape models, we select implicit 
polynomial shape representation approach [1] [4] [5]. The probability function of 
each parameters of the polynomial shape representation can then be defined. In the 
paper, to facilitate model set construction, we take only one object instance to build 
each shape model, which will be discussed in Section 3.  

When the shape model set is built, a model based object segmentation method 
guided by the polynomial shape model is then applied for each model. The method is 
a model based deformable contour within a framework of constrained contour energy 
minimization [7]. The solution derived from the method produces two alternating 
processes of contour evolution and contour model fitting. The contour evolution is 
generally driven by the information of image gradient, object interior features, and 
estimated shape model. The contour model fitting dynamically combines the current 
contour with the shape model to generate an estimated shape model contour, which 
is then used in contour evolution. The algorithm stops at a resulting contour together 
with a distance measure to the selected model contour for model selection. We select 
the resulting contour with the smallest distance to one of the shape models as the 
final result and the shape model as what target object belongs. The philosophy can be 
explained as “shape model competition”, in which each shape model in the model set 
competes to guide the object segmentation or shape formation, and the shape model 
that wins the competition, which is evaluated by the distance to the resulting contour, 
is declared as the winner, and its associated contour is the resulting contour. 
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3. Shape Model Construction 

To build shape model set, we choose polynomial shape representation method and 
then construct shape models using the polynomial shape representation.  

3.1 Polynomial Shape Representation and Invariant Feature Selection of a Close 
Contour 

Let ),( yxf  be a polynomial of degree n in ),( yx  given by  
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where [ ]T
naaaaA 0011000     Λ=  is the coefficient vector consisting of l entries, and 

[ ]TnyxyxyxX       1 2 Λ=  is also an l-vector. A close contour can be implicitly defined 

as, 
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This )(AZ f
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and ε  is the average square distance. It can be shown that as ∞→m , Eq. (3) can be 
written as the continuous form, 
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As shown in [1] [4], minimizing Eq. (3) can be approximated by minimizing,  
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Since a direct solution to minimizing 
Tε ′  is easily trapped at local minima, the 3L 

fitting algorithm of [4] is used by adding two additional terms to 
Tε ′  resulting in 
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1cε  and 

2cε  

are the two additional fitting error terms (similar to Eq. (5)) for an outside point set 

τ−Γ  to the outer contour { }ττ −==− ),(:),( yxfyxZ f
 and an inside point set τΓ  to 

the inner contour { }ττ == ),(:),( yxfyxZ f
, respectively, satisfying, 

τ=))(),,(dist( AZyx fii
         if ττ ΓΓ∈ − or ,),( ii yx ,           (7) 
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with τm  being the number of points from τΓ , and τ−m  being the number of points 

from τ−Γ . The value 
Tε ′′  of Eq. (6) can also be expressed in matrix notation as  
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with the size, ττ mmmmT ++= − . )( τ−ΓX , )( 0ΓX , and )( τΓX  are matrices con-

taining τ−m , m , and τm  points of TX s from τ−Γ , 0Γ , and τΓ , respectively, with 

τ−m  and τm  points being uniformly spaced (preferably) on τ−Γ  and τΓ , and 0Γ  the 

finite contour point sets as noted earlier. Likewise, b is an 
Tm  vector having first 

τ−m  entries of τ−  to be followed by m  entries of 0, and the last τm  entries of τ . 

Furthermore, shape features { }kααα ,,, 21 Λ  invariant under rotational transforma-

tions are derived from A [6] as,               
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invariants, and n is the highest order of the polynomial (see Eq. (1)). Let 
[ ]T

kαααα ,,, 21 Λ= . The similarity between two shapes represented by shape fea-

tures α  from A and model shape features *α  from the model coefficient vector *A  
can be measured by the Mahalanobis distance of 

                  )()( *** ααψαα −−= T
MD                    (10) 

where *ψ  is the information matrix of the model shape *α  [6]. Approximated by 

the first order Taylor series expansion around *A , Eq. (10) can be written as, 
        ))(()( *** AAAQAAD T

M −−=                 (11) 

with )()()( **** AFAFAQ T ′′= ψ .  

MD  is a shape distance measure between two contours using rotational invariant 

features after a proper position translation and size normalization operation. It will 
be shown in Section 4 that 

MD  can be used both as a guide to the progress of the 

contour marching operation in gaining shape matching and ultimately as a measure 
for the shape model selection decision. Notice that both contours have to translate 
their centers to the origin and size normalized before 

MD  is computed. 

3.2 Shape Model Construction 
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Figure 1 The images of row a are initial images (Banana1, Banana2, Leaf1, Leaf2). 
The images of row b are the corresponding manually drawn model contours. The 6th 
degree implicit polynomial fitting results are presented on the row c. The row d images 
are the clean up fitting results 

 a1     a2          a3  a4    b1    b2    b3       b4 

   d1    d2    d3       d4 
 c1     c2          c3  c4 

To construct shape model, we first manually draw a model contours, then fit an im-
plicit polynomial function according to Eq. (8), and finally select the shape features 
according to Eq. (9). Let k = 27 in Eq. (9) be the total number of invariant shape 
features of a 6th order polynomial with l= 28. The model information matrix *ψ  is 

the inverse of a covariance matrix of *α  which can be estimated by sampling a Gaus-
sian perturbation of the contour model [6]. Here, a sample size of 150 is used on a 
standard deviation of 0.01 perturbation. At a given iteration, both the current de-
formed contour and the model contour have to be translated to the same center with 
equal size before using Eq. (11) to compute 

MD  [1].  

After we construct the shape models, the distinguished ability of the 6th order 
polynomial implicit representations through Mahalanobis distance has to be evalu-
ated before any applications shown in Table 1. 

Table1. The Mahalanobis distance between the models. Here, Banana1*, Ba-
nana2*, Leaf1*, Leaf2* is the original shapes after rotation of 45 degree. 

 Ba-
nana1* 

Ba-
nana2* 

Leaf1* Leaf2* 

Ba-
nana1 

5.6 17.6 91.8 56.7 

Ba-
nana2 

15.2 3.3 45.0 58.2 

Leaf1 78.4 65.7 7.8 68.4 
Leaf2 35.4 33.5 28.1 6.2 

 
 

4. Model Set Based Object Segmentation 

In this section, a model set based object segmentation approach is formulated. As 
discussed in Section 4.1, invariant features are used to define a distance between an 
input contour and model contour using Mahalanobis distance. This minimum dis-
tance measure is used as the shape model selection as the class belonging of an ex-
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tracted contour to one of G models. For ease of presentation, a single model )( *AZ f
 

contour with rotational invariant features )( ** Agαα =  is considered, and a complete 

model selection will be presented in the applications in Section 5. 
Let ),( tqC  be a deforming close contour with interior Ωc(t) at time t and pa-

rameter q, its polynomial representation be the coefficient vector A. 
{ }0),(:),()( === AXyxfyxAZ T

f
 

The coefficient vector A is determined as discussed in Section 3. An algebraic fitting 
error measure between the two sets, ),( tqC  and )(AZ f

, can be shown as 
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where s is the arc length, q is the contour parameter, ),( yxI  is the image brightness 

at ),( yx and 
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),( yxI with ),( yx on ),( tqC , ),( yxD  is any function characterizing the interior of 

expected target contour. Specific description of ),( yxD  will be provided later. 
VT  is 

a positive threshold. 
To solve the problem, we take a Lagrange approach by minimizing  
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, (16’)  a direct computation is compli-

cated and unnecessary. Here, we use a practical approach of partitioning the compu-
tation into two components. Each component is optimized while holding other com-
ponent unchanged. Our first step is to hold A in Eq. (16’) constant and deform 
C(q,t). We consider a level set surface ),( yxD f

,      
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It can be shown that minimizing Eq. (16) is equivalent to minimizing 
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According to [7], by minimizing Eq. (18), a curve evolution formula can be produced 
as             

[ ]  ),()()(]),([
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21 NyxDNNgwIwkgTyxD
t
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fV
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where k is the curvature of C(q, t). 
Our next step is to hold C(q,t) constant and minimize Eq. (16’) by adjusting A. In 

an effort to compute 
A

Lg

∂
∂

, we return to the finite point set representations of both 

searched contour ),( tqC  and model contour.  

Setting 0=
∂
∂

A

Lg , we have 

[ ] [ ]bXAAQwAQwXXA T
LL

T
L 32

**1*
332 )()1()()1( λλ ′+−−+′= −       (20) 

 
Notice that 22 λλ Tm=′  where 

Tm  is the total number of points in 0Γ , τΓ , and τ−Γ . 

Discussion: It is easy to see that the minimization of )),,(( AtqCLg
 is composed of 

two steps. The first step is the deformation of ),( tqC  driven by the curve evolution 

formula of Eq. (19) using an initial )(AZ f
. In this deformation, the contour point 

velocity is determined by the combined effect of region features [ ]VTyxD −),( , con-

tour gradient function { })()( NgwIwkg ⋅∇−∇ , and shape fitting measure, 

[ ]ff TyxD −),( , between ),( tqC  and )(AZ f
. The second step is the recalculation of 

“A” using Eq. (20). In here, the resulting “A” is to produce a new )(AZ f
 that is 

close to both ),( tqC  and )( *AZ f
. Then as the velocity in Eq. (19) is very small, and 

“A” in Eq. (20) remains the same with very little change from the earlier iteration 
value, the algorithm converges. Notice that the shape fitting measure 

Tε  is only 

trying to deform ),( tqC  toward )(AZ f
 without any size consideration. Therefore, if 

a larger weighting factor 2λ or '2λ  is used, it can impede the speed of outward 

marching of ),( tqC  and lower the convergent speed.  

For our implementation in the next section, we need to specify ),( yxD  letting 
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where IG *∇  is the absolute value of the gradient of I(x, y) smoothed by a Gaus-

sian filter N(0, σ1
2). I0 is the average intensity inside target boundary. 

5. Algorithm and Experiments 

The sensitivities between 2λ′  and w  settings in Eq. (20) are of importance to our 

computation of “A”. With the model and object contour shown in Figures 2.1a and 
2.1b, respectively, results are shown in Figure 2.2a to 2.2f using different 2λ′  values. 

By holding w  constant at 0.5, with large 12 >′λ , the resulting “A” and their respec-

tive contours are closer to the object and with the extreme case of 102 =′λ , the influ-

ence of the model does not exist, and with much small 01.02 <<′λ , they are closer to 

the model in the extreme case with little influence from the image data. A setting of 
001.02 =′λ  is selected, and it is selected such that a balance influence between the 

object contour and the model contour is achieved. This setting will be dependent 
upon the shape configuration of selected model. The parameters needed to be set for 
the Eq. (19) are σ , 1λ , 2λ , and w. 

Segmentation algorithm: 
Step 1. Select a 5 by 5 contour inside the target object as initial contour C(q,0). Keep 

)0,(
00

ˆ qCII =  constant, where )0,(
0

ˆ qCI  is the average intensity inside the initial contour 

C(q,0). With C(q,0) and the given shape model, compute “A” according to Eq. (20). 
Step 2. Evolve contour ),( tqC  by solving Eq. (19) using narrow band level set 

method for l iterations. Stop when the difference between two successive iterations is 
insignificant or a maximum of iteration number mn  has been reached. 

Step 3. With the contour ),( tqC  given by Eq. (19), compute “A” according to Eq. 

(20). 
Step 4. Update ),(

00
ˆ tqCII = , where ),(

0
ˆ tqCI  is the average intensity inside contour C(q, 

t).  Go to Step 2. 
These are two parts to our experiment. Part1 is to illustrate the segmentation ca-

pability of the algorithm. Here, we use the leaf with an “X1” mark as in the model 
shown in Figure 3(a). The final segmentation result of leaf with a “Y12” mark in 
Figure 3(a) is shown in Figure 3(b) with an initial inside contour. Figure 3(c) shows 
the resulting segmentation contour using the same velocity equation of Eq (19) with 

02 =λ , i.e., there is no model. Similarly, using “X2” of Figure 3(d) as model pro-

vides a segmentation result of “Y22”on Figure 3(e). As for the illustration of the 
model selection result, we compute the mD  value of 4 leaves data, “Y11” and “Y12” 

for class 1 in Figure 3(a), and “Y21” and “Y22” for class 2 in Figure 3(a). The result-
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ing mD  using different models deforming targets and classification decisions are 

shown in Table 2. 
We also applied the method for extracting the external boundaries of intracranial 

in MRI brain images as shown in Figure 4. 
 

Table2  Model Selection Result 

Data(Deforming 
Model) MD  

Class Decision 

Y11 (Model1) 14.1 
Y11 (Model2) 30.7 

Class 1 

Y12 (Model1) 15.7 
    Y12 (Model2) 38.0 

Class 1 

Y21 (Model2) 16.0 
Y21 (Model1) 30.6 

Class 2 

Y22 (Model2) 12.9 
Y22 (Model1) 22.4 

Class 2 

 

7. Conclusion 

We have introduced a model set based object segmentation method based on the 
framework of constrained contour energy minimization. With the usage of polyno-
mial shape representation, the algorithm can select from a shape model set the 
proper object model to guide object segmentation.  

References 

1. G. Taubin, “Estimation of Planar Curves, Surfces and Nonplanar Space Curves Defined by 
Implicit Equations, with Applications to Edge and Range Image Segmentation,” IEEE 
Trans. on PAMI, vol. 13, no. 11, pp. 1,115-1,138, Nov. 1991. 

2. A. Chakraborty, and J. Duncan, “Game-Theoretic Integration for Image Segmentation” 
IEEE Trans. On PAMI, Vol. 21 No. 1, pp. 12 -30, Jan. 1999. 

3. R. Malladi, J. Sethian and B. Vemuri, “Shape Modeling with Front Propagation”, IEEE 
Trans on PAMI, Vol. 17, No.2, pp. 158-171, Feb. 1995. 

4. M. Blane, Z. Lei, H. Civi, and D. Cooper, “The 3L Algorithm for Fitting Implicit Polyno-
mial Curves and Surfaces to Data” IEEE Trans. on PAMI, Vol. 22, No. 3, pp. 298 -313. 
Mar. 2000. 

5. J. Subrahmonia, D.B. Cooper, and D. Keren, “Practical, Reliable, Bayesian Recognition of 
2D and 3D Objects Using Implicit Polynomials and Algebraic Invariants,” IEEE Trans. on 
PAMI, vol. 18, no. 5, pp. 505-519, May 1996.  

6. J. P. Tarel and D. B. Cooper, “A New Complex Basis for Implicit Polynomial Curves and 
Its Simple Exploitation for Pose Estimation and Invariant Recognition,” Proc. IEEE Conf. 
Computer Vision and Pattern Recognition, pp. 111-117, 1998.  

7. X. Wang, L. He, Y. Han, and W. Wee, “A Constrained Optimization Approach to Deform-
able Contour Method", pp. 183-192, British Machine Vision Conference, 2002. 

975

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



8. T. Sebastian, P. Klein, and B. Kimia, “Recognition of Shapes by Editing Shock Graph,”, 
pp. 755-762, IEEE ICCV 2001.  

9. L. Staib and J. Duncan, "Boundary Finding with Parametrically Deformable Models,", 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(11), 1061 (1992). 

 

1a The model contour 5.0,0.1.2b *
2 == wλ

5.0,1.02c. *
2 == wλ 5.0,01.0.d2 *

2 == wλ 5.0,000001.0e.2 *
2 == wλ

1b The current contour 

Figure 2 The new generated contour when using  different *
2λ  and w  

Figure 3 (a) Original image for segmentation (b) The segmenta-
tion results of (a) using shape model (c) The segmentation resulting 
without shape model. (d) Another original image. (e) Segmentation 
results of (d). 

 

5.0,01.0a.2 *
2 == wλ  

 

5.0,0.f2 *
2 == wλ

Figure 4 (a) Original MRI brain image 
(b) Extracted intracranial contour 
   

(a) (b) (c) (d) 

(e) 

(a) (b) 
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