
Two-Level Image Segmentation Based on Region
and Edge Integration

Qing Wu and Yizhou Yu

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{qingwu1,yyz}@uiuc.edu

Abstract. This paper introduces a two-level approach for image seg-
mentation based on region and edge integration. Edges are first detected
in the original image using a combination of operators for intensity gra-
dient and texture discontinuities. To preserve the spatial coherence of
the edges and their surrounding image regions, the detected edges are
vectorized into connected line segments which serve as the basis for a
constrained Delaunay triangulation. Segmentation is first performed on
the triangulation using graph cuts. Our method favors segmentations
that pass through more vectorized line segments. Finally, the obtained
segmentation on the triangulation is projected onto the original image
and region boundaries are refined to achieve pixel accuracy. Experimen-
tal results show that the two-level approach can achieve accurate edge
localization, better spatial coherence and improved efficiency.

1 Introduction

Two basic image segmentation approaches are region-based and edge-based seg-
mentation. Region-based segmentation offers closed contours automatically while
edge-based methods need an extra propagation step to obtain complete region
contours. Region-based methods can also be categorized into local region growing
and top-down global region partitioning, such as graph-theoretic optimal group-
ing algorithms [1, 2]. Global region partitioning makes use of global optimality
criteria and can produce more semantically meaningful results, but typically suf-
fers from poor localization of the region boundaries. This is because the criteria
used are based on the statistics obtained from all the pixels in an entire image
region. They do not reflect the local characteristics available at a specific pixel.
On the other hand, local region growing or edge detection offer accurate bound-
ary localization, but usually do not have sufficient global knowledge to perform
the task well. Researchers have also been trying to integrate region and edge
information in image segmentation. A complete survey on such integrations is
given in [3]. In this paper, we are interested in integration between global graph-
theoretic grouping algorithms and edge detection. There has been limited work
along this direction except the embedded integration presented in [4, 5].

957

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



The goal of this paper is to perform image segmentation with integrated
region and edge information so that both global image statistics and local edge
responses can be utilized. The result we get from this would still be segmented
regions but with accurate boundary localization at places where edge detection
operators produce reasonably strong responses. The rest of the region boundaries
can also be viewed as a viable solution to contour completion based on region
information.

How can we integrate region and edge information in image segmentation ?
A detected edge does not necessarily belong to a region boundary since an object
can have internal edges besides the edges on its contour. The decision whether a
specific edge should belong to a region boundary should be made within a global
context, such as the relative positions of all the edges and the image statistics
of the regions surrounding the edges, rather than a local one. A detected edge
segment is usually made up of multiple connected edge pixels. These multiple
edge pixels should be considered as a whole instead of a set of uncorrelated edge
fragments because of their spatial proximity (Fig. 1). For the same reason, the
pixels immediately adjacent to the edge should be considered as connected local
regions instead of uncorrelated pixels. If we imagine a local image region with
an edge passing through its center, the edge splits the region into two halves.
Depending on whether this edge belongs to a region boundary or not, these two
halves may or may not belong to the same region in the final segmentation.
Nevertheless, pixels in the same half should belong to the same region. Note
that part of the boundaries of the two halves except for the central edge are
indefinite and need to be determined during segmentation. This argument leads
to the suggestion that region segmentation should be performed at a coarser
granularity than pixels in order to incorporate edges.

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Fig. 1. A connected edge segment divides its neighborhood into two halves. During
segmentation, the multiple pixels on the edge segment as well as the pixels in each of
the half neighborhoods should be considered as a whole instead of being uncorrelated.

958

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



The main contribution of this paper is to propose a two-level approach for
image segmentation with integrated region and edge information. At the lower
level is the original set of pixels upon which edge detection can be performed.
Connected edge pixels are grouped into edge segments. At the upper level is
a triangulation which is an abstraction of the original image. Each image edge
segment corresponds to an edge in the triangulation. Segmentation is performed
on the triangulation. Once the segmentation at the upper level is done, those
triangle edges without corresponding edge segments at the lower level will be
refined at the pixel level. Segmentation at a granularity coarser than pixels in
a rich texture region is also helpful because texture descriptors typically need
to collect information in a local region. One additional advantage of having a
two-level scheme is significantly improved efficiency.

2 Two-Level Segmentation

2.1 Edge Detection

Our method needs to detect edges first in a preprocessing step although edge
detection is not the focus of this paper. Since we only consider gray-scale images,
we apply previous approaches for detecting both intensity and texture edges.
Intensity edges are detected using the first and second derivatives of Gaussian.
A tensor product between a Gaussian and the first derivative of Gaussian detects
step edges. It is very similar to the numerical solutions of Canny detectors [6].
A tensor product between a Gaussian and the second derivative of Gaussian is
used for detecting ridge edges. These filters based on Gaussian derivatives can
produce accurate locations for intensity edges. But they may produce extraneous
edges in texture regions. The initial set of texture edges are obtained from the
EdgeFlow algorithm [7]. While this algorithm can detect most texture edges, it
also produces extraneous edges.

To remove extraneous edges, we adopt a likelihood of texture edges as fol-
lows: define a circular image region centered at the currently considered pixel;
divide the circle into two halves using one of the potential edge orientations;
apply multiscale odd-symmetric and even-symmetric filters to the two halves[5];
compute both intensity histograms and histograms of the filter responses for
each of the two half regions [8]; use χ2 test to calculate the difference between
two corresponding histograms, where the χ2 distance between two histograms is
defined as

χ2(hL, hR) =
1
2

∑

k

[hL(k) − hR(k)]2

hL(k) + hR(k)
;

obtain the weighted average of the histogram differences. The likelihood of a
texture edge at the pixel is defined as the maximum weighted average among all
potential orientations. Six different edge orientations are used in practice. We
eliminate those extraneous edges which lie in an image region with low likelihood
of texture edges.

959

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



Finally, we combine intensity and texture edges. Actually the EdgeFlow algo-
rithm also produces intensity edges which are not as accurate as those obtained
from Gaussian derivatives. Therefore, if there is an EdgeFlow edge in the vicinity
of an edge obtained from Gaussian derivatives, the EdgeFlow edge is eliminated.

Our segmentation algorithm can incorporate any type of edges including the
high quality edges recently obtained from a learning method [9].

2.2 Upper Level Construction

We first vectorize the detected edges from Section 2.1. This process converts
every connected edge into a set of connected line segments by tracing the pixels
on the edge. All the vertices of the line segments lie on the original edge. To
create a new line segment from a vertex v1, we move along the edge pixel by
pixel until the distance between the current pixel p and v1 reaches a prescribed
threshold or we have reached the end of the edge. Note that we do not require
that the line segments fit the original edge very well since we still keep the
position of the original edge in the lower level and the line segments are only
an abstraction in the upper level. The line segments are called hard edges since
each of them is associated with a corresponding edge segment in the lower level.

The hard edges may be quite sparse in the image plane. Although we need a
coarser granularity at the upper level, it is still undesirable to have a large im-
age region overly under-represented since there may be weak boundaries present.
Therefore, we generate more line segments and vertices as follows. Set up a uni-
form sparse grid over the image plane with its spacing the same as the distance
threshold used in vectorization. Inside each grid cell, we find locally strongest
edges that were missed during edge detection when some global thresholds on
filter responses are typically applied. Vectorize these weak edges, too. Line seg-
ments thus generated are also collected as hard edges. If a grid cell is completely
featureless, an isolated vertex with a randomized location is generated within
the cell. This last step has resemblance to the sampling step in [10].

Once we have the set of line segments and isolated vertices, a constrained
Delaunay triangulation (CDT) can be constructed. The vertex set of the CDT
consists solely of the predefined vertices and all the endpoints of the line seg-
ments. It is guaranteed that the predefined line segments are actually edges in
the triangulation. Under these constraints, the CDT is the optimal triangulation
in the sense that the minimal angle in the triangulation is maximized. We use
the software package, TRIANGLE [11], to generate the CDT. The CDT repre-
sents the coarse structure we adopt for the upper level. Note that not all edges
in the CDT have associated edge segments in the lower level.

There are a few reasons why we choose the above CDT as the coarse structure
instead of choosing an over-segmentation of the original image using a local
region-growing scheme. First, region-growing needs a stopping criterion which is
not trivial to define. Second, region-growing does not work well for texture images
with high contrast local variations. Third, region-growing may extend a local
region beyond a low contrast gap on a boundary, thus, connect the neighborhoods
on both sides of the boundary.

960

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



2.3 Triangulation Segmentation by Normalized Cut

Our main segmentation is performed on the coarse structure defined by the
obtained CDT. Therefore, the pixels belonging to the same edge segment or
triangular region are not going to be separated. Obviously, we would like the
final segmentation to pass through as many hard edges as possible. Once a hard
edge is part of a boundary, its associated edge segment in the original image
immediately provides accurate localization of that part of the boundary.

A weighted graph G = (V,E) can be defined on the CDT. The nodes rep-
resent the set of triangles. There is a graph edge between two nearby triangles.
Additional graph edges connecting distant triangles may also be defined. The
normalized cut algorithm [2] can be applied to this graph to segment the set of
triangles into multiple groups with each group having coherent attributes.

We first introduce some details of the normalized cut algorithm where the
weight on an edge measures the similarity of the attributes at the two nodes.
The idea is to partition the nodes into two subsets, A and B, such that the
following disassociation measure, the normalized cut, is minimized.

Ncut(A,B) =
cut(A,B)
asso(A, V )

+
cut(A,B)
asso(B, V )

(1)

where cut(A,B) =
∑

u∈A,v∈B w(u, v) is the total connection from nodes in A to
nodes in B; asso(A, V ) =

∑
s∈A,t∈V w(s, t) is the total connection from nodes in

A to all nodes in the graph; and asso(B, V ) is similarly defined. To compute the
optimal partition based on the above measure is NP-hard. The second eigenvec-
tor of the following generalized eigenvalue system yields a real-valued solution
to the normalized cut.

(D − W )y = λDy (2)

where D is a diagonal matrix with D(i, i) =
∑

j w(i, j), W is the weight matrix
with W (i, j) = w(i, j). A suboptimal partition can be obtained by searching for
the best threshold to partition the real-valued elements of y into two subgroups.
The two resulting subregions from this partition can be recursively considered
for further subdivision. To improve efficiency, the complete graph defined by the
data is usually simplified to only have edges that connect two nearby nodes.

In our current context, the attributes at a graph node are collected from
its corresponding triangle which in turn has a set of corresponding pixels in
the original image. Because the edge segments in the original image may not be
straight, the set of pixels in the lower level corresponding to a triangle most likely
form a nontriangular region. The intensity of the node is the average intensity
of all the pixels in that region. Because there are much fewer triangles than the
number of pixels, we can build a much denser graph over the set of triangles
while still maintaining high efficiency. The weight w(u, v) between triangles Tu

and Tv is the product of a similarity term S(u, v) and a proximity term P (u, v).

S(u, v) = exp(−d2
s(u, v)/2σ2

s) (3)

961

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



where ds(u, v) measures the difference of the average intensities.
The proximity term over an edge (u, v) is used to model spatial coherence.

P (u, v) = c(u, v) · exp(−dist2(u, v)/2σ2
p) (4)

where dist(u, v) is some distance measure and c(u, v) is the connectivity be-
tween the two triangles. We connect the centroids of the two triangles and check
whether this connection intersects with any hard edges. c(u, v) = 0 if there are
at least one intersections and c(u, v) = 1 otherwise. We found out through ex-
periments that this binary definition of c(u, v) can better force a segmentation
to go through hard edges than a continuous definition. We adopt the Euclidean
distance between the centroids for dist(u, v).

The constrained Delaunay triangulation is partitioned into multiple groups
of triangles after normalized cut is performed. We take this grouping result as
the final segmentation of the triangulation.

D

E

l1

l2

A B
sb

Fig. 2. Boundary refinement at the lower level. A rectangular region surrounding the
edge AB to be refined is marked.

2.4 Lower Level Boundary Refinement

Once the segmentation at the upper level is finished, the hard edges on the
upper level boundaries already have corresponding edge segments at the lower
level while the rest of the upper level boundary edges still need to find out their
counterparts at the lower level. We simply project an upper level boundary onto
the lower level and search for a new boundary with pixel accuracy in its vicinity.
There are potentially many techniques that can be applied for this purpose, such
as snakes[12] and dynamic programming[13]. In practice, we choose to adopt the
generalized graph minimum s − t cut [14].

962

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



(a) (b) (c)

(d) (e)

Fig. 3. (a) an original image; (b) final edge detection results; (c) the constrained De-
launay triangulation; (d) a segmentation of the CDT (triangles in the same group have
the same intensity); (e) final image segmentation with refined boundaries.

If we partition a weighted graph G into two subgraphs G1 and G2 by enforcing
minimum cost on the cut, it is well known that we can easily obtain unbalanced
results with one of the subgraphs only containing a small number of nodes.
One method to remedy this needs some prior knowledge of the two resulting
subgraphs. It needs to know a subset of the nodes in G1 as well as a subset
in G2. Assume the unknown desired partition of G = (V,E) is G1 = (V1, E1)
and G2 = (V2, E2) with V = V1 ∪ V2, and two subsets of nodes, V s

1 ⊆ V1 and
V s

2 ⊆ V2, are known. The problem becomes finding an optimal partition of the
difference set V − V s

1 − V s
2 . If both V s

1 and V s
2 have only one node, this is the

standard s-t minimum cut problem and can be solved using network maximum
flow algorithms[15] . If at least one of V s

1 and V s
2 has multiple nodes, the nodes

need to be merged to create a single new node. Because of the merge, a new

963

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



(a) (b)

(c) (d)

Fig. 4. (a) an original image; (b) final edge detection results; (c) the constrained De-
launay triangulation; (d) final image segmentation with refined boundaries.

graph G′ = (V ′, E′) is created based on the original one. In the new graph,
V ′ = (V −V s

1 −V s
2 )∪{s}∪ {t} where the node s replaces V s

1 and t replaces V s
2 .

If an edge (u, v) ∈ E with u, v ∈ V s
1 , it is removed. If an edge connects V s

1 and
V − V s

1 , it becomes incident to s. Anything related to t is also treated similarly.
It can be easily proven that the s-t minimum cut of the transformed graph is
actually the minimum cut of V − V s

1 − V s
2 in the original graph[14].

Our method to refine a boundary is as follows. Suppose AB is a boundary
edge in the triangulation, and it is shared by two triangles �ABD and �ABE
(Fig. 2). A rectangular image region surrounding AB and with one of its axes
parallel to AB is marked as the potential region containing the accurate bound-
ary. The width of the rectangle should be comparable to the average height of
the triangles to ensure sufficient coverage of the pixels in them. A graph can
be built for this rectangular region with the set of covered pixels as its nodes.
Each node is connected to its eight neighbors. For every pair of adjacent nodes,
their edge weight is the similarity between the intensities. Before minimum cut
is performed, all the pixels on l1 are merged into a single node s, and those
on l2 are merged into t. The minimum s-t cut (the dashed line in Fig. 2) thus
obtained is guaranteed to enter the region at one of the side borders and exits
at the other.

964

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



(a) (b)

(c) (d)

Fig. 5. (a) an original image; (b) final edge detection results; (c) the constrained De-
launay triangulation; (d) final image segmentation with refined boundaries.

If multiple consecutive triangle edges need refinement at the same time, the
refined edges should still be connected. The edges are still processed in a se-
quential order. Suppose two triangle edges e1 and e2 join at vertex v. During the
refinement of e1, the new position of v, v′, is going to be determined. When e2 is
up for refinement, v′ should be fixed. Since v′ should be close to one of the side
borders, sb, of the surrounding rectangle of e2, this fixed endpoint can be en-
forced by merging pixels on the side border sb into either node s or t depending
on the part of sb they lie on.

3 Results and Conclusions

We have successfully run our algorithm on a variety of natural images. Figure 3
to 5 show typical segmentation results. σs in (3) is set to 25 if there are 256 grey
scales for the image intensity, and σp in (4) is set to 50 pixels. In all the cases,
the foreground object is cleanly separated from the background. However, there
are oversegmented regions in the background. Color information has not been
used in these examples.

In summary, we have introduced a two-level approach for image segmentation
based on region and edge integration. Edges are first detected in the original

965

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



image. To preserve the spatial coherence of the edges and their surrounding
image regions, the detected edges are vectorized into connected line segments
which serve as the basis for a constrained Delaunay triangulation where grouping
is actually carried out. Our method favors segmentations that pass through more
detected edges in the original image.

Acknowledgment

This work was supported by National Science Foundation CCR-0132970.

References

1. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: Theory
and its application to image segmentation. IEEE Trans. Pat. Anal. Mach. Intell.
11 (1993) 1101–1113

2. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: IEEE Conf. on
Computer Vision and Pattern Recognition. (1997) 731–737

3. Freixenet, J., Munoz, X., Raba, D., Marti, J., Cufi, X.: Yet another survey on
image segmentation: Region and boundary information integration. In: European
Conf. Computer Vision. (2002) 408–422

4. Leung, T., Malik, J.: Contour continuity in region based image segmentation. In:
Fifth European Conf. on Computer Vision. (1998)

5. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image
segmentation. Int’l Journal of Computer Vision 43 (2001) 7–27

6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pat. Anal.
Mach. Intell. 8 (1986) 679–698

7. Ma, W., Manjunath, B.: Edgeflow: a technique for boundary detection and image
segmentation. IEEE Transactions on Image Processing 9 (2000) 1375–88

8. Heeger, D., Bergen, J.: Pyramid-based texture analysis/synthesis. In: Proc. of
SIGGRAPH. (1995) 229–238

9. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries
using brightness and texture. In: Neural Information Processing Systems(NIPS).
(2002)

10. Belongie, S., Fowlkes, C., Chung, F., Malik, J.: Spectral partitioning with indefinite
kernels using the nystrom extension. In: European Conf. Computer Vision. (2002)
531–542

11. Shewchuk, J.: Triangle: Engineering a 2d quality mesh generator and delaunay
triangulator. In: First Workshop on Applied Computational Geometry. (1996)
124–133

12. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int’l Journal
of Computer Vision (1988) 321–331

13. Mortensen, E., Barrett, W.: Intelligent scissors for image composition. In: SIG-
GRAPH 95 Proceedings. (1995) 191–198

14. Xu, N., Ahuja, N.: Object contour tracking using graph cuts based active contours.
In: IEEE Conf. on Image Processing. (2002) 277–280

15. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice Hall, Inc. (1993)

966

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney


