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Abstract. This paper describes methods of extracting region bound-
aries from the frames of an image sequence by combining information
from spatial or temporal cooccurrence matrices of the frames. It summa-
rizes past work on the uses of cooccurrence matrices for image segmen-
tation; qualitatively describes the peaks (clusters of high values) that
can be expected to occur in cooccurrence matrices when the image(s)
contain smooth regions separated by stationary or moving boundaries;
and describes methods of extracting stationary or moving region bound-
aries from an image by combining information from spatial and temporal
cooccurrence matrices.

1 Cooccurrence matrices and their uses

Cooccurrence matrices, originally called gray-tone spatial dependency matrices,
were introduced by Haralick et al. [1], who used them to define textural properties
of images.

Let I be an image whose pixel gray levels are in the range 0, . . . , 255. Let δ =
(u, v) be an integer-valued displacement vector; δ specifies the relative position of
the pixels at coordinates (x, y) and (x + u, y + v). A spatial cooccurrence matrix
Mδ of I is a 256 × 256 matrix whose (i, j) element is the number of pairs of
pixels of I in relative position δ such that the first pixel has gray level i and the
second one has gray level j. Any δ, or set of δ’s, can be used to define a spatial
cooccurrence matrix. In what follows we will usually assume that δ is a set of
unit horizontal or vertical displacements, so that Mδ involves counts of pairs of
neighboring pixels.�

In addition to their original use in defining textural properties, cooccurrence
matrices have been used for image segmentation. Ahuja and Rosenfeld [2] ob-
served that pairs of pixels in the interiors of smooth regions in I contribute to
elements of Mδ near its main diagonal; thus in a histogram of the gray levels

� Cooccurrence matrices based on smaller numbers of gray levels can also be used, but
our method of combining cooccurrence matrices works better for larger matrices.
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of the pixels that belong to such pairs, the peaks associated with the regions
will be preserved, but the valleys associated with the boundaries between the
regions will be suppressed, so that it becomes easier to select thresholds that
separate the peaks and thus segment the image into the regions. In [3], Haddon
and Boyce observed that homogeneous regions in I give rise to peaks (clusters of
high-valued elements) near the main diagonal of Mδ, while boundaries between
pairs of adjacent regions give rise to smaller peaks at off-diagonal locations;
thus selecting the pixels that contribute to on-diagonal and off-diagonal peaks
provides a segmentation of I into homogeneous regions and boundaries.

Pairs of pixels in the same spatial position that have a given temporal sep-
aration in a sequence of images can be used to define temporal cooccurrence
matrices. Let I and J be images acquired at times t and t + dt; thus dt is the
temporal displacement between I and J . A temporal cooccurrence matrix Mdt

is a 256 × 256 matrix whose (i, j) element is the number of pairs of pixels in
corresponding positions in I and J such that the first pixel has gray level i and
the second one has gray level j.

Boyce et al. [4] introduced temporal cooccurrence matrices and used them in
conjunction with spatial cooccurrence matrices to make initial estimates of the
optical flow in an image sequence. They demonstrated that an initial probability
of a pixel being in the interior or on the boundary of a region that has smooth
optical flow in a given direction in a pair of images could be derived from the
positions of the peaks in a spatial cooccurrence matrix of one of the images for
a displacement in the given direction, and in the temporal cooccurrence matrix
of the pair of images. Borghys et al. [5] used temporal cooccurrence matrices
to detect sensor motion in a moving target detection system by comparing the
spatial cooccurrence matrix of one of the images with the temporal cooccurrence
matrix of the pair of images.

2 The structure of cooccurrence matrices

In the next section we will describe methods of using spatial or temporal cooc-
currence matrices to extract stationary or moving region boundaries from the
images of a sequence. In this section we describe the peak structures that should
be present in spatial and temporal cooccurrence matrices.

We assume that an image I is composed of regions in which (ignoring noise)
the gray levels vary smoothly, and that if two regions are adjacent, they meet
along a boundary at which the gray level changes significantly. It is well known
(see [3]) that in a spatial cooccurrence matrix of I, each region (say having
mean gray level g) should give rise to a peak centered on the main diagonal in
approximate position (g, g); the sum of the element values in this cluster should
be proportional to the area of the region. Similarly, each boundary between two
adjacent regions (say having mean gray levels g and h) should give rise to a pair
of off-diagonal peaks at approximate positions (g, h) and (h, g), and with value
sum proportional to the length of the border.
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Figure 1a is a frame of an image sequence showing a person in dark clothes
standing in front of a gray screen in a laboratory. Figure 1b shows the histogram
of the image. The peak at the low end of the grayscale represents the dark
clothes; the peak near the middle of the grayscale represents the screen; and the
plateau represents the other regions in the image. Figure 1c shows the spatial
cooccurrence matrix of this image for unit displacements in all four horizontal
and vertical directions; values of 50 or greater are displayed as white and values
less than 50 are displayed as black. In this display, groups of on-diagonal clusters
have fused together into elongated clusters, and the small off-diagonal clusters
are not visible because the matrix elements in these clusters have values less
than 50. The two short elongated on-diagonal clusters represent the dark clothes
and the gray screen respectively, and the long elongated on-diagonal cluster
represents the other regions in the image. In Figure 1d values greater than 0 in
the cooccurrence matrix are displayed as white. The off-diagonal clusters are still
not visible because the region boundaries are not very sharp, so pairs of pixels
that differ by a unit displacement contribute to cooccurrence matrix elements
close to the diagonal; these pairs therefore cannot be distinguished from pairs
that belong to on-diagonal clusters. Figure 1e shows the nonzero values in a
cooccurrence matrix based on horizontal and vertical displacements of 5. In this
matrix, the off-diagonal clusters representing the boundaries between the dark
clothes and the gray screen are clearly visible.

Let I and J be consecutive frames of an image sequence acquired by a sta-
tionary camera. Suppose the frames show an object moving against a stationary
background at a rate of a few pixels per frame. In the temporal cooccurrence
matrix of I and J , pairs of pixels that are in a moving region in both images
will contribute to an on-diagonal peak, and pairs of pixels that are covered up
or uncovered by the motion will contribute to a pair of off-diagonal peaks.

Figures 2a and 2b show the second and tenth frames of the image sequence
that had Figure 1a as its first frame. Figures 2c and 2d show the nonzero elements
of the temporal cooccurrence matrices of Figures 1a and 2a and of Figures 1a
and 2b. In Figure 2c the nonzero values are concentrated near the main di-
agonal, because relatively little motion took place between Figures 1a and 2a;
but between Figures 1a and 2b considerable motion took place, so there are
many off-diagonal nonzero values in Figure 2d. There are clusters of these val-
ues that correspond to significant covering and uncovering of the background by
the person’s dark arms. There are also “bridges” joining these clusters to the
corresponding on-diagonal clusters (which are visible as bulges in the elongated
on-diagonal cluster) because the uncovered background region is composed of
parts that have a variety of average gray levels.

3 Extracting boundaries using cooccurrence matrices

As discussed in Section 2, boundaries between contrasting neighboring regions
in an image give rise to off-diagonal peaks in a spatial cooccurrence matrix of
the image, and motion of an object against a contrasting background between
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two frames of an image sequence gives rise to off-diagonal peaks in a temporal
cooccurrence matrix of the two frames. Thus it should be possible in principle to
extract boundaries from an image by detecting off-diagonal peaks in its spatial
cooccurrence matrix and identifying the image pixels that contributed to those
peaks. Similarly, it should be possible in principle to extract moving boundaries
from a pair of successive frames of an image sequence by detecting off-diagonal
peaks in the temporal cooccurrence matrix of the two frames and identifying the
pixels in either of the frames that contributed to those peaks.

Unfortunately, as we saw in Section 2, off-diagonal peaks are not always easy
to detect in cooccurrence matrices. Since the images are noisy, all the elements
near the diagonal of a cooccurrence matrix tend to have high values, and the
presence of these values makes it hard to detect off-diagonal peaks in the matrix
that lie close to the diagonal since these peaks tend to have lower values. If
we knew the standard deviation of the image noise, we could estimate how far
the high values which are due to noise extend away from the diagonal of the
cooccurrence matrix, and we could then look for peaks in the matrix that are
farther than this from the diagonal; but information about the image noise level
is usually not available.

In this section we describe a simple method of suppressing clusters of high-
valued elements from a spatial or temporal cooccurrence matrix. As we will
see, the suppressed matrix elements tend to lie near the diagonal of the matrix.
Hence when the suppression process is applied to a spatial cooccurrence matrix,
the image pixels that contributed to the unsuppressed elements of the matrix
tend to lie on region boundaries, and when the suppression process is applied
to a temporal cooccurrence matrix the image pixels that contributed to the
unsuppressed elements of the matrix tend to lie on the boundaries of moving
regions.

Our method of suppressing clusters of high-valued elements from a coocur-
rence matrix takes advantage of two observations:

(1) The matrix elements in the vicinity of a high-valued cluster almost certainly
have nonzero values, so that the nonzero values in and near the cluster
are “solid”. On the other hand, it is more likely that there are zero-valued
elements in and near a cluster of low-valued elements, so that the nonzero
values in and near such a cluster are “sparse”.

(2) As we saw in Section 2, the on-diagonal clusters in a cooccurrence matrix,
when arise from regions in the image, can be expected to be symmetric
around the main diagonal, and the off-diagonal clusters, which arise from
boundaries between contrasting regions in the image, can be expected to
occur in pairs whose means are symmetrically located around the main di-
agonal, since the noise in the image has zero mean. Hence if we have two
cooccurrence matrices that are transposes of one another (see below), the
clusters in these matrices should occur in the same approximate positions.

We can obtain spatial cooccurrence matrices that are transposes of one an-
other by using symmetric displacements—e.g., unit displacements to the right
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and downward in one matrix, and unit displacements to the left and upward
in the other. Similarly, we can obtain temporal cooccurrence matrices that are
transposes of one another by using reverse temporal displacements; i.e., if I and
J are successive frames of an image sequence, we can use the temporal cooccur-
rence matrices of I and J and of J and I. Figures 3a and 3b shows the nonzero
elements in two spatial cooccurrence matrices of Figure 1a; unit leftward and
upward displacements are used in Figure 3a, and unit rightward and downward
displacements are used in Figure 3b. Figure 4a (the same as Figure 2c) shows
the nonzero elements in the temporal cooccurrence matrices of Figure 1a and 2a,
and Figure 4b shows the nonzero elements in the temporal cooccurrence matrix
of Figures 2a and 1a. Evidently, Figures 3a and 3b are transposes of each other,
and Figures 4a and 4b are transposes of each other.

Let M and N be two cooccurrence matrices that are transposes of one an-
other. We suppress from M all elements that are nonzero in N (or vice versa).
Elements of M that are in or near a “solid” cluster will almost certainly have
nonzero values in N ; hence these elements will almost certainly be suppressed
from M . On the other hand, many of the elements of M that are in or near a
“sparse” cluster will have zero values in N because the nonzero elements of these
clusters in M and N are not in exactly symmetrical positions; hence many of
these elements will not be eliminated by the suppression process.

Figure 5a shows the nonzero elements of Figure 3b that are zero in Fig-
ure 3a, and Figure 5b shows the nonzero elements of Figure 3a that are zero in
Figure 3b. We see that the “solid” parts of the matrix have been suppressed and
the “sparse” parts have survived. Figure 5c shows the pixels of Figure 1a that
contributed to the nonzero elements in Figures 5a and 5b. Almost all of these
pixels lie on region boundaries in Figure 1a; note, however, that many of the
pixels that lie on low-contrast boundaries have been suppressed, because such
boundaries contribute to near-diagonal elements of the matrix.

Figure 6a shows the nonzero elements of Figure 4b that are zero in Fig-
ure 4a, and Figure 6b shows the nonzero elements of Figure 4a that are zero in
Figure 4b. Here too, the “solid” parts of Figures 4b and 4a (respectively) have
been suppressed, but the sparse parts have largely survived. Figure 6c shows
the pixels of Figure 1a that contributed to the nonzero elements in Figures 6a
and 6b. Almost all of these pixels lie on boundaries of the person’s body; they
are especially strong on the boundaries of the hands and arms, which have the
greatest motion.

4 Concluding remarks

Spatial and temporal cooccurrence matrices can be combined in other ways to
extract pixels that lie on boundaries. Figure 7a shows the nonzero elements in
a (symmetric) spatial cooccurrence matrix of Figure 1a; Figure 7b shows the
elements in Figure 7a that are also nonzero in the temporal cooccurrence matrix
of Figure 2c; and Figure 7c shows the pixels that contributed to the nonzero
elements of Figure 7b. We see that these pixels nearly all lie on boundaries in
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Figure 1a; they provide an even stronger representation of these boundaries than
we had in Figure 5, because Figure 7b has many more nonzero elements than
Figures 5a-b.

Because of space limitations, we have made no attempt to provide a the-
oretical analysis of our methods or to compare them with other methods of
cooccurrence-based segmentation or of spatial or temporal boundary detection.
However, we should point out that since our methods involve only Boolean com-
parisons of cooccurrence matrices, they are quite inexpensive computationally.
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(a) (b)

(c)

(d) (e)

Fig. 1. (a) A real image. (b) Its histogram. (c) Its spatial cooccurrence matrix for
one-pixel horizontal and vertical displacements in all four directions; values of 50 or
greater are shown as white. (d) The same matrix with values greater than 0 shown as
white. (e) The analogous matrix for five-pixel displacements.
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(a) (b)

(c) (d)

Fig. 2. (a,b) Two other frames of the image sequence containing Figure 1a; Fig-
ures 1a,2a, and 2b are frames 1,2, and 10 of the sequence. (c-d) Nonzero elements
in the temporal cooccurrence matrices of Figures 1a and 2a and of Figures 1a and 2b.

(a) (b)

Fig. 3. Nonzero elements in the spatial coocurrence matrices of Figure 1a for (a) right-
ward and downward displacements (b) leftward and upward displacements.
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(a) (b)

Fig. 4. Nonzero elements in the temporal cooccurrence matrices of (a) Figures 1a and
2a (same as Figure 2c) and (b) Figures 2a and 1a.

(a) (b) (c)

Fig. 5. (a-b) Nonzero elements of Figure 3b that are zero in Figure 3a and vice versa.
(c) Pixels of Figure 1a that contributed to the nonzero elements in Figures 5a-b.

(a) (b) (c)

Fig. 6. (a-b) Nonzero elements of Figure 4b that are zero in Figure 4a and vice versa.
(c) Pixels of Figure 1a that contributed to the nonzero elements in Figures 6a-b.
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(a) (b) (c)

Fig. 7. (a) Nonzero elements in the spatial cooccurrence matrix of Figure 2a for unit
displacements in all four directions (same as Figure 2d). (b) Nonzero elements of Fig-
ure 7a that are zero in the temporal cooccurrence matrix shown in Figure 3c. (c) Pixels
of Figure 1a that contributed to the nonzero elements in Figure 7b.
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