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Abstract. Face detection is fundamental for several important appli-
cations, such as, face recognition and human-computer interaction. This
paper details a novel hierarchical face detector which combines motion,
colour and late fusion. Motion segmentation is employed to eliminate
background clutter and to reduce the initial search space. Subsequently,
skin segmentation is used to determine a candidate face. Five simple
eye-detection algorithms are fused to robustly localise the eyes within
the candidate. Fusion is beneficial because the large amount of variation
within the face makes it difficult for any individual technique to perform
well under all conditions. The resulting system is capable of localising
faces from still images in real-time with an accuracy of 93.75%.

1 Introduction

Since the events of September 11, biometric research has received greater empha-
sis. Current biometrics include: fingerprints, palm-prints, hand geometry, gait,
speech patterns, facial features, iris patterns and DNA. Currently, iris recog-
nition is the most robust of the commercially viable biometrics with an equal
error rate of 1 in 131, 000 or 0.0008% [1]. However, accurate images of the iris
are required and hence, the subject must cooperate. Face recognition has grown
in popularity because it is not obtrusive, does not require the subject to coop-
erate and most importantly, people seem willing to accept it. There has been
a plethora of approaches proposed in the literature including, amongst others:
Fractal codes [2], Principal Component Analysis (PCA) [3], Independent Com-
ponent Analysis (ICA) [4], and Linear Discriminant Analysis (LDA) [5]. Much
of our recent work was inspired by the original eigen-face technique of Turk and
Pentland [3].

Clearly, for there to be any hope of recognising a face, it must first be located
correctly. If the face cannot be found or it is poorly localised then recognition will
undoubtably fail. In fact, misclassifications are often the result of failed localisa-
tion and not deficiencies in the recogniser. Variations in pose, scale, illumination
� This project was funded by an Office of Navy Research (ONR) grant.
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and facial expression are the primary sources of difficulty. However, one problem
that is often overlooked, is computational complexity. Face detection alone is
not especially useful. Further analysis is required in order to recognise the face,
compress it efficiently or interact accordingly. Therefore, it is imperative that
the face localiser consumes as few processor cycles as possible. Its importance,
not just for face recognition, has ensured that face detection has developed into
a field study in its own right, a survey of which was recently conducted by Yang
et al. [6].

In this paper, we propose a novel face detection scheme which fuses several
efficient eye-detection algorithms to create a robust system with faster than real-
time performance. We demonstrate that accurate results can be achieved by
combining a few very simple heuristics. The remainder of the paper is organised
as follows: Section 2 outlines the face detection algorithm and describes each
stage in detail; Section 3 demostrates the different detectors in isolation and
contrasts them with the fused approach; finally, Section 4 gives our conclusions
and describes future research directions.

2 Algorithm

Our face detection algorithm follows a conceptually simple hierarchical proce-
dure. Firstly, motion segmentation is used to separate moving objects from the
stationary background. This is important because simple feature detectors, like
those that we are using, are often confused by background clutter. It also serves
to reduce our search space and hence improves the performance of latter stages.
Next, the moving regions are searched for skin tones as human faces consist pri-
marily of skin. Although skin colour is somewhat susceptible to illumination, it
is still a very useful feature because it is invariant to pose and scale. Based on
the size and shape of the skin regions, at most, a single candidate face region is
selected for further processing. However, the algorithm can easily be extended
to multiple faces by allowing more than one skin region to be a candidate face.

Within the candidate face region, five different techniques are used to deter-
mine the likelihood of each position belonging to an eye. The results of the five
techniques are fused to produce a final eye likelihood map. This map is then
searched for candidate eye locations and geometry contraints are used to select
the best left and right eye pair. If a suitable pair of eyes could be found, the
candidate face region is verified as being a face. Finally, the face region is nor-
malised according to the eye locations and the location of the face and eyes are
output to the recognition engine. The key phases of the algorithm are described
in greater detail in Sections 2.1-2.3.

2.1 Motion Detection

The motion detector that we are utilising was previously developed by us [7]. It
relies on the premise that the more often a pixel takes a particular colour, the
more likely it is that it belongs to the background. Therefore, at the heart of
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the algorithm is a very low complexity method for maintaining some limited but
important information about the history of each pixel. To do this, each pixel is
modeled by a group of K clusters where each cluster consists of a weight wk and
an average pixel value called the centroid ck.

Incoming pixels are compared against the corresponding cluster group. The
goal is to find the matching cluster with the highest weight and hence the clusters
are searched in order of decreasing weight. A matching cluster is defined as one
which has a Manhattan distance between its centroid and the incoming pixel
below a user prescribed threshold, T . If a matching cluster could not be found,
then the cluster with the minimum weight is replaced by a new cluster having
the incoming pixel as its centroid and a low initial weight. Alternatively, if a
matching cluster was found, then the weights of all clusters in the group and the
centroid of the matching are adapted accordingly. After adaptation, the weights
are normalised so they total to one.

Pixels are classified by summing the weights of all clusters that are weighted
higher than the matched cluster. This calculation is simplified by sorting the
clusters in order of increasing weight after which, we can employ the following
calculation:

P =
K−1∑

k>Mk

wk (1)

The result, P , is the total proportion of the background accounted for by the
higher weighted clusters and is an estimate of the probability that the incoming
pixel belongs to the foreground.

2.2 Skin Detection

As aforementioned, skin detection is a useful technique for finding faces because
it is invariant to pose and scale. Furthermore, it has been shown that regardless
of race, the skin colours cluster fairly well in chrominance [8]. It follows that the
perceived interracial difference in skin colours depends more heavily on lumi-
nance than on chrominance. Hence, by ignoring luminance, non-prejudicial skin
detectors can more readily be developed. Ignoring luminance has the additional
benefit of suppressing some of the effects of illumination.

Colour can be represented in a multitude of different ways and the optimal
choice of representation, or colour space, is application dependent. Some colour
spaces, like YCbCr, are useful for digital video compression, whereas others, like
HSV (Hue, Saturation, Value) are best suited for graphic artists. Similarly, the
choice of colour space influences the performance of skin detection. Therefore,
following on from [8] and [9] we evaluated a number of popular spaces, includ-
ing: YCbCr; HSV; TSL; normalised RGB; and the SCT (Spherical Coordinate
Transform). An extract of the results our empirical study is contained in Section
3 based on which, we selected the SCT for use in our system.

The skin and non-skin colour distributions were both modeled using a mix-
ture of Gaussians. Modeling both distributions is necessary for Bayesian classi-
fication and achieves far superior discrimination than either model in isolation.
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Pixels are classified as skin whenever the ratio of the skin and non-skin likeli-
hoods exceeds a threshold derived according to Bayes’ theorem using Equation
2.

p (xsc|λskin)
p

(
xsc|λskin

) >
P (λskin|xsc) (1 − P (λskin))
P (λskin) (1 − P (λskin|xsc))

(2)

where
xsc is the source pixel.
P (λskin) is the a priori probability of skin.
P (λskin|xsc) is the a posteri skin class probability threshold.

After skin detection, the largest connected region is chosen as the candidate
face, subject to an area constraint. A fuzzy bounding box is then placed around
the candidate face and outlying skin blobs are eliminated. Any remaining skin
regions determine the bounds of the candidate face. Finally, within these bounds,
high intensity pixels are suppressed (by setting them to the mean value) as they
are predominantly caused by light reflecting from glasses and detract from eye
localisation. A block diagram of the skin detection algorithm can be found in
Figure 1.

Extract SCT
Features

Classification using
non-skin GMM

Classification using
skin GMM

Probability Map
using Bayes

Probability Map
Filtering

ThresholdingPostprocessing
Segment Face

Region of Interest

Input

Image

Face Search

Region

 

Fig. 1. Skin Detection Algorithm

2.3 Eye Localisation

The previous two phases of the algorithm were designed to progressively re-
duce the search space, resulting in a single candidate face. The mandate of this
phase is to verify or reject the candidate by searching for eyes within it. There
are a multitude of techniques that we could have employed to locate the eyes.
However, the large variation within and around the eyes makes it difficult for a
single technique to perform well in all conditions. As a consequence, many tech-
niques achieve robustness at the expense of computational complexity and even
given a limited search space, they would have been prohibitively slow. There-
fore, we selected five very simple eye detectors and used late fusion to combine
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their results. The hope was that although the detectors performed poorly in
isolation, together they would be accurate and robust. Furthermore, since only
two of the detector have dependencies, much of the code could run in parallel.
The five methods chosen were: gradient image filtering, chrominance differenc-
ing; chrominance shifting; eigen-eyes (i.e. PCA) and eye/eyebrow discrimination.
Scale tolerance is achieved by applying each method at number of different scales.

The gradient image filtering eye detector attempts to capture the variation
that exists in and around an eye. First, the magnitude of the image gradient in
YCbCr space is calculated according to Equation 3. The resulting image is then
truncated to the range [0, 100] and convolved with a two-dimensional elliptical
kernel. The shape of the kernel was chosen because it emphasises the elliptical
structure of the eye and its size was estimated from training data. The resulting
filtered gradient image is inverted so that eye locations correspond with image
minima.

G =
∣∣∣∣
∂Y

∂x

∣∣∣∣ +
∣∣∣∣
∂Y

∂y

∣∣∣∣ +
∣∣∣∣
∂Cb

∂x

∣∣∣∣ +
∣∣∣∣
∂Cb

∂y

∣∣∣∣ +
∣∣∣∣
∂Cr

∂x

∣∣∣∣ +
∣∣∣∣
∂Cr

∂y

∣∣∣∣ (3)

Face images that are transformed into the YCbCr colour space exhibit a high
concentration of blue-chrominance and a low concentration of red-chrominance
around the eyes [10]. The chrominance differencing eye detector exploits this
observation by convolving the difference between the chrominance channels, Cr−
Cb with an elliptical filter. Eyes can then be located by searching for minima
in the resulting image. However, eyebrows often also appear as minima and can
significantly degrade performance.

Chrominance shifting attempts to suppress the interference caused by eye-
brows by shifting the chrominance difference eye map vertically and then sub-
tracting it from itself. Although this is a very simple heuristic, it is useful for
the following reasons:

– Eyebrow regions will be subtracted by the corresponding (vertically shifted)
eye regions and since both are consistently low, the result will approximate
zero.

– The eyes will be subtracted by the high-valued skin regions that are located
directly below them and will therefore receive large negative values.

– Finally, regions of skin will in general be subtracted by other regions of skin
and hence will also approximate zero.

Thus, the final eye map will be approximately zero everywhere except at the
eyes where it will exhibit large negative values. The magnitude of the vertical
shift is constant and was derived from training data.

The eigen-eyes detector is derived from the eigen-face technique of Turk and
Pentland [3]. Eigen-eyes are simply the principal components of a distribution
of eye images or equivalently, the eigenvectors of the covariance matrix that is
formed by treating the images as vectors. Low energy noise is suppressed by only
retaining the eigenvectors which correspond to the M largest eigenvalues. Eye
images can be efficiently approximated by a linear combination of eigen-eyes.

903

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



However, non-eye images cannot accurately be recovered after projection into
the subspace. Therefore, the reconstruction error or distance from feature space
(DFFS) is a measure of how similar an image is to an eye.

Rudimentary eye detectors, like those we are using, are often confused by
eyebrows and falsely classify them as eyes. The goal of eye/eyebrow discrimi-
nation is to counteract this effect. Individual eye and eyebrow eigen-spaces are
first created and then combined into a single orthonormal basis according to the
Gram-Schmidt process [11]. If LDA is applied directly to a two-class problem
such as this, then the resulting discriminant space (DS) will have a dimension-
ality of one. Since neither the eye or eyebrow classes can be adequately modeled
by single Gaussians, intra-class clustering is used to form 8 eye and 16 eye-
brow pseudo-classes [12]. This effectively transforms the two-class problem into
a 24-class problem and hence LDA produces a 23-dimensional DS. Within the
DS, the eye and eyebrow densities, p

(
y|λ{DS}

eye

)
and p

(
y|λ{DS}

eyebrow

)
are approx-

imated using GMMs and as before, Bayes’ theorem can be used to estimate the
probability of pixels belonging to either class.

After each detector has completed, the resulting eye maps are normalised to
the range [0, 1] and are fused using a weighted sum with empirically derived
weights, an efficient and effective fusion technique [13]. Candidate eyes are lo-
cated for each scale by searching within the fused eye map. Finally, geometry
contraints and a priori knowledge are exploited to determine the pair of candi-
dates that most likely correspond with the true eyes. If a suitable pair of eyes is
not found then the candidate face is rejected. Otherwise it is said to be verified
and is passed on to the recogniser along with the eye locations. The entire eye
localisation algorithm is given in Figure 2

3 Results

The motion detector was tested independently from the remainder of the system
as very few face databases contain useable video. A standard 1.8 Ghz Pentium 4
computer with 512 Mb of RAM and running Redhat Linux 7.3 (kernel 2.4.20) was
used to collect the results. The choice of camera was limited to those with manual
white balance and manual gain control from which we selected the Bosch 1153P
analog security camera. Under this configuration, our algorithm proved capable
of segmenting 320×240 PAL video at full frame rate, using only 35% of the CPU.
Some typical segmentation results can be found in Figure 3. Empirical testing
was conducted to determine the optimal colour space to use for skin/non-skin
segmentation. The skin colour models were trained from manually segmented
skin regions of 156 images (39 individuals, 4 images per person) taken from the
XM2VTS [14] database. The non-skin models were constructed from 179 images
from a natural imagery database that was collected in-house. Based on our
evaluation, the Spherical Coordinate Transform provided the best results and
was selected for use in our algorithm. Table 3 details the four best performing
colour spaces and the optimum GMM orders.
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Ouput  from motion and skin colour segmentation
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edge map
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Cb-Cr

chrominance
shifted map
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Fig. 2. Eye Localisation Algorithm

(a)

(b)

Fig. 3. Segmentation results: (a) Original; (b) Moving Objects.

Colour Space Skin GMM Order Non-Skin GMM Order Equal Error Rate (%)

SCT 2 15 5.18%

YCbCr 2 4 5.5%

RGB 4 20 5.56%

Normalised RGB 6 2 6.02%
Table 1. Colour Spaces for Skin Segmentation
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The face detection algortihm (consisting of skin colour segmentation and eye
localisation) was tested on the XM2VTS database. Each eye localisation algo-
rithm was tested in isolation to one another (the skin colour segmentation algo-
rithm was always present). Combinations of the eye localisation algorithms were
then tested and finally all the eye localisation algorithms were tested together.
The output of each eye localisation algorithm was an eye map image, where the
minima represent the most probable left and right eye locations. Weighted sum-
mation was used to fuse each algorithm and equal weights for the fusion was the
default. The best (lowest) minima for the output from three scales was used as
the final eye locations. The output of each of the separate systems can be seen
in Figure 4. The eyes were correctly localised if they satisfied Equation 4 [15].

eeye =
max(dl, dr)

deye
(4)

where
deye is the distance between the two true eye centers.
dl is the distance between true and estimated left eye position.
dr is the distance between the true and estimated right eye position.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. (a) Original Image; (b) ROI; (c) Cb; (d)Cr; (e) Gradient Filtering; (f) Cr-Cb;
(g) Shifted Cr-Cb; (h) DFFS; (i) DS; (j) Final Eye Map

The tests using the XM2VTS database were based on Configuration I. The
training data consisted of all Training subsets defined within the Clients set (200
individuals, 600 images). The testing was conducted using the full Test subset
defined within the Impostors set (70 individuals, 560 images). The results for
the various combinations of eye localisation algorithms can be found in Table 2.
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Test Correct Left and Right Eye Positions (%)

DS Only 31.43%

Chrominance Difference Only 65.89%

Gradient Filtering Only 66.43%

Chrominance Shift Only 74.46%

Full system minus DS and DFFS 85.18%

Full system minus DFFS 87.69%

Full system minus Chrominance Shift and DS 91.07%

Full system minus DS 92.5%

Full system minus Chrominance Shift 92.5%

Full system 93.75%
Table 2. Face Detection Results

4 Conclusions

The face detection system presented in this paper demonstrates that the fusion
of multiple eye localisation algorithms can result in a more robust system. The
most accurate standalone eye localisation algorithm when used in isolation has
an accuracy of 74.46% which is far lower than the 93.75% of the full system.
This level of accuracy was obtained from an equally weighted summation of the
eye detector outputs.

Future work will involve determining the optimal weights for weighted sum-
mation fusion. In addition, the potential of other eye localisation algorithms will
be investigated and if they prove beneficial they will be included in future itera-
tions of the system. It is also possible that detecting other facial features such as
the nose and mouth will allow more rigid geometry constraints to be used when
verifying candidate faces. Finally, an infrared pupil detector is currently being
developed as a replacement for the eye detectors for certain applications.
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