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Abstract. A new algorithm for the compression of dynamic positron emission 
tomography (PET) data is presented. It consists of a temporal compression 
stage based on the application of principal component analysis (PCA) directly 
to the PET sinograms to reduce the dimensionality of the data.  This is 
followed by a spatial compression stage using JPEG 2000 to each PCA channel 
weighted by the signal in each channel. By combining these temporal and 
spatial compression techniques we can achieve a compression ratio as high as 
129:1 while simultaneously reducing noise and improving functional 
estimation compared with the uncompressed data, and preserving the sinogram 
data for later analysis. We validate our approach with a simulated phantom 
FDG brain study and clinical dynamic PET datasets. The results of 
performance evaluation suggest the new compression technique not only is 
able to reduce the original sinogram datasets by more than 95%, but also 
improve the reconstructed image quality for the quantitative analysis.  

1   Introduction 

Positron emission tomography (PET) raw data are initially acquired as projection 
data in the form of sinograms, which require large volumes of data storage. For 
example, a dynamic PET study using a SIEMENS ECAT 951R PET scanner consist 
of 31 cross-sectional planes, each of which has 22 temporal frames, and each 
sinogram frame has 192 x 256 pixels.  However, the original large volume of 
sinograms may not be necessary to provide the maximum information for the study. 
It is desirable for the sinograms to be compressed while preserving reconstructed 
image fidelity before being transmitted and stored. In our previous work, we have 
demonstrated a new temporal compression scheme based on the application of 
principal component analysis (PCA) [1] directly to PET sinograms prior to image 
reconstruction (S-PCA) [2]. It can reduce the dimensionality of the data from 
typically 22 to 5 temporal frames, whilst simultaneously reducing noise and 
improving functional estimation compared with the original data. Additionally it 
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avoids introducing image reconstruction errors into the analysis and decreases the 
computational burden of image reconstruction.  Moreover, the S-PCA helps to 
extract the useful information from the PET, producing more precise functional 
modeling comparing with a conventional sampling schedule (CSS), an optimal 
sampling schedule design (OSS), and the PCA in image domain (I-PCA) [2]. In this 
paper, we extend the temporal compression algorithm by combining the S-PCA and 
channel-weighted JPEG2000 in the sinogram domain with the dual aims of 
diagnostic accuracy and high compression ratios. Some investigators have previously 
applied PCA and DCT such as JPEG in the image domain as the data compression 
technique for dynamic medical imaging [3,4]. However, JPEG can create blocking 
artifacts at high compression ratios, which can affect the reconstruction.  In this 
paper we will systematically analyse the performance of the new compression 
method based on PCA with JPEG 2000 in the sinogram domain (S-PCA + S-
JPEG2000) using the Zubal phantom simulation data [5] and three clinical patient 
studies. We compare the results of the estimation of local cerebral metabolic rate of 
glucose (LCMRGlc) using a five-parameter glucose tracer 18F-fluoro-deoxyglucose 
(FDG) model [6] on the decompressed sequence, as such quantitative analysis of 
dynamic PET is a key requirement [7].  

2. Dynamic PET with Tracer Kinetic Modeling 

The term functional imaging refers to a range of measurement techniques in which 
the aim is to extract quantitative information about physiological function from 
image-based data. Unlike the anatomical imaging techniques which provide 
structural information, biomedical functional imaging techniques such as PET and 
SPECT can provide image-wide quantification of physiological, pharmacological and 
biochemical functions within the body, and support the visualization of the 
distribution of these functions corresponding to anatomical structures. Physiological 
function can be estimated by observing the behaviour of a small quantity of an 
administered substance ‘tagged’ with radioactive isotopes. Images are formed by the 
external detection of gamma rays emitted from the patient when the radioactive 
isotopes decay. Because they allow observation of the effects of physiological 
processes, functional imaging techniques can provide unique diagnostic information. 
Tracer kinetic modeling techniques are widely applied in PET to extract 
physiological information about dynamic processes in the human body. Generally, 
this information is defined in terms of a mathematical model µ(t|P) (where t=1,2,…, 
T are discrete sampling times of the measurements and P is a set of model 
parameters), whose parameters describe the delivery, transport and biochemical 
transformation of the tracer. The input function for the model is the plasma time 
activity curve (PTAC) obtained from the measurement of blood samples. 
Reconstructed PET images provide the output function in the form of a physiological 
tissue time activity curve (TTAC) denoted by Ζi(t), and i=1,2,…, I corresponds to the 
i-th pixel in the imaging region. Application of the model on a pixel-by-pixel basis to 
measured PTAC and TTAC data using known rapid parameter estimation 
algorithms, yields physiological parametric images. 
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3   Method 

Our compression method has the following major steps: 
Compression stage: Step1. Noise normalization of PET sinogram frames; Step 2. 
PCA is applied to the noise-normalized sinograms; Step 3. The compression ratios 
for each channel are determined based on the signal importance in each channel; 
Step 4. Channel-weighted JPEG 2000 is applied to each sinogram principal 
component channel. 
Decompression stage: Step 5. JPEG 2000 is decoded to regenerate decompressed 
sinogram PCs; Step 6. Sinogram PCA channels are reconstructed e.g. using filtered-
back projection; Step 7. Inverse PCA is applied in image domain to reconstruct the 
full dynamic image sequence for parameter estimation and parametric image 
generation.  
Step 1. Sinogram Noise Normalisation: A PET scanner outputs the initial projection 
data in the form of N sinogram frames. This sinogram data is assumed to have been 
corrected for non-ideal physical scanner characteristics where necessary, e.g. PET 
data is typically attenuation-corrected.  Each temporal sinogram frame is noise-
normalized by multiplying by the square root of the total number of detected in the 
counts in the sinogram divided by the time interval covered by the frame - PCA is 
data driven technique that cannot itself distinguish noise from signal and so the 
frames are normalized to have approximately equal noise levels [8]. 
Step 2. Sinogram-domain PCA: The PCA is applied directly to the time series of N 
(noise-normalized) sinograms to produce a reduced number M of sinogram principal 
component (S-PC) channels. The PCA is performed simultaneously on the data from 
all spatial planes.  
    The objective of principal component analysis is to represent orthogonal 
maximum variance directions for the analysed data set. This multivariate image 
analysis method is well suited to high dimensional, highly correlated data such as 
dynamic PET data.  If there are N frames in the CSS, PCA produces M principal 
components, M ≤  N, where the eigenvalues of the PCA channels are ordered from 
largest to smallest.               
    Given a random vector population  Xsinogram = (x1,…, xn)

T ,x1,…xn in this case 
represents the individual time samples of  the dynamic tomographic study in the 
sinogram domain, and the mean vector of the population is defined as   

                                         ogramsinµ  =  E { Xsinogram }                                             (1) 

and the covariance matrix is  

C =  E { (Xsinogram - ogramsinµ ) (Xsinogram - ogramsinµ )T}                   (2)  

,with eigenvalue-eigenvector pairs ( 1λ ,e1), ( 2λ ,e2)… ( nλ ,en). The eigenvectors are 

in the order of descending eigenvalues (largest first).  To reduce the data set, only the 
first M eigenvectors are used to represent the data; the  transformation of data vector 
Xsinogram is derived as 

                               p~ = Asinogram (Xsinogram  - ogramsinµ )                                (3)              

where p~  is a point in the orthogonal coordinate system defined by the eigenvectors. 

Components of p~  can be seen as the coordinates in the orthogonal base. Asinogram is a 

813

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



matrix consisting of first M eigenvectors of the covariance matrix as the row vectors. 
Step 3. PCA Channel weighting: It is required that each PC in the M sinogram PCs 
is compressed with different quality according to their priority (importance of the 
signal) in the set of PCs.  The PC channel with the higher priority requires less 
compression ratio.  
Step 4.  Sinogram-domain JPEG 2000:JPEG 2000 is applied to the each of M 
sinogram principal component channels with a weighted compression ratio to 
produce compressed M sinogram principal components. 
Step 5. JPEG 2000 decoding: The decoding is performed on the M JPEG2000 
compressed sinogram PCs to regenerate decompressed M sinogram PCs. 
Step 6. PCA channel reconstruction:A set of M image principal component 
channels are reconstructed from the M decompressed sinogram PCs by using an 
image reconstruction algorithm such as filtered back projection (FBP) or ordered 
subset expectation-maximization (OSEM).  
Step 7.  Inverse PCA:The inverse of the PCA is performed on the M image 
principal component channels to regenerate a time series of N image frames. 
In implementing the inverse PCA in the image domain, the PCA of the sinograms 
creates a transformation matrix Asinogram and a mean vector µsinogram (see eq. 1). The 
inverse PCA transformation in the image domain as required by step 7 is then-  

                Inv( p~ ) =  NUM_PROJ  p~ )(A sin
T

sinogram ogramµ+×                      (4) 

where NUM_PROJ is the total number of projection angles in the tomograph.  

4. Experiments 

Simulation design: To validate this algorithm, a single slice of the brain Zubal 
phantom was used to simulate a dynamic PET brain study [5]. We inserted one 
synthetic tumour into lower left white matter. The activities in tumour, gray matter, 
and white matter were generated using a five-parameter four-compartment glucose 
tracer FDG model [9]. The conventional sampling schedule (CSS) for generating the 
tissue time activity curves (TTACs) is a set of intervals using the following scanning 
sequence: 10x 12 second scans, 2x0.5 minute scans, 2x1 minute scans, 1x1.5 minute 
scan, 1x3.5 minute scan, 2x5 minute scans, 1x10 minute scan and 3x 30 minute 
scans.   The tissue time activity curves were then assigned to each brain region and a 
dynamic sequence of sinograms was generated by forward projecting the images into 
3.13 mm bins on a 192 x 256 grid. To make the simulation data comparable to the 
expected real clinical data, we validated the noise level of the simulated model by 
comparing with that of clinical patient data- sinograms were scaled so that total 
counts were approximately 70M total counts for 31 planes over a one hour sample. 
Appropriate Poisson noise was added to each sinogram frame. For the per- regions-
of-interest (ROI) experiments, to minimise partial volume effects, no blur was 
modelled, but for the per-pixel experiments blur of 5.8mm FWHM blur was 
simulated. Finally, dynamic sinograms were then reconstructed in a 128 x 128 
matrix using filtered-back projection (FBP). For the ROI experiments, to avoid 
partial-volume effects, a ramp filter was used with the FBP, whereas for the per-pixel 
experiments a Shepp-Logan filter at 0.5 cps was used. Three ROI’s were selected - 
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22 pixels for grey matter, 31 pixels for white matter and 10 pixels for tumour – to 
examine the accuracy and precision of parameter estimation by various methods.   
Clinical studies: This algorithm was also evaluated on three clinical human brain 
FDG-PET studies- which were acquired by a SIEMENS ECAT 951R PET scanner, 
at the PET and Nuclear Medicine Department, Royal Prince Alfred Hospital, Sydney. 
The patients received an FDG infusion injection. A conventional sampling schedule 
(CSS) was used to acquire a dynamic sequence of 22 frames over 60 mins, which was 
6x10s, 4x30s, 1x120s, and 11x300s. The PET data were decay-corrected and 
attenuation-corrected to the time of injection. Finally, dynamic sinograms were 
reconstructed in a 76 x 76 matrix using filtered-back projection with a Shepp-Logan 
filter with cutoff at 0.5 of the Nyquist frequency.  
Evaluation: In this paper, for the per-ROI experiments, we used the percentage error 
of the estimated LCMRGlc mean and its coefficient of variation (CV) (which is 

defined as KCV Kσ= , Where K is a true parameter value, K  is the mean of its 

estimates, Kσ  is the standard deviation of the estimated parameter) to validate the 

performance of the various methods. For the per-pixel image-wide experiments, the 
criterion used to assess the validity of our technique was the mean square error 
(MSE). Compression Ratio (CR) was used as the measurement to assess compression 
efficiency, which is defined as CR = t / L, where t is the original file size, L is the 
compressed file size. 

5. Results and Discussion 

Figure 1 plots the mean squared error of the reconstructed images from the five 
sinogram PCA channels alone (S-PCA5), and followed by S-JPEG 2000 compression 
(S-PCA5 + S-JPEG2000) for patient 1, plane #16. The mean squared error slowly 
increases: even at a compression ratio of 100, the MSE is still less than 0.07.  There 
is very minimum MSE up to a CR of 20. Normally each sinogram is approximately 
three times larger than its reconstructed image for PET brain studies, sinograms have 
more spatial redundancy and so are relatively easier to compress than reconstructed 
images.   
Figure 2 gives a visual comparison of the reconstructed PCA channels from the S-
PCA5 and S-PCA5 + S-JPEG2000 for patient 1, plane #16. The first PCA channel 
represents a weighted average of the component tissue time activity curves (TTACs) 
with largest eigenvalues, and the next few PCA channels represent tissues with 
significantly different TTACs with the decreasing amounts of variance. The higher 
channels are less important and so can tolerate a larger compression error. However, 
because S-PCA with noise normalization can’t completely separate the signal from 
the noise, the eigenvalue of each channel isn’t a good indicator of the importance of 
the signal in that channel. In this experiment the compression ratios for this 
experiment are chosen empirically based on the decreasing importance of the signal 
in the higher channels - CRs of 10:1, 33:1, 50:1, 100:1 and 100:1 for the first 
channel to fifth channel respectively. Future investigation of the optimal compression 
ratios for each S-PCA channel for accurate data analysis of dynamic PET is planned.     
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Presented in table I is the LCMRGlc parametric estimation comparison of S-PCA5, 
S-PCA5 followed by JPEG 2000 in sinograms (S-PCA5 + S-JPEG2000), and CSS 
methods for the simulated dataset. The ranking from best to worst for the averaged 
estimation error of LCMRGlc is S-PCA5 (1.38%), S-PCA5 + S-JPEG2000 (1.70%) 
and CSS (1.75%). The averaged values show S-PCA5 + S-JPEG2000 has the lowest 
CV for the estimated LCMRGlc (Ri) among all of the methods. The ranking for 
averaged coefficient of variation of Ri from best to worst is S-PCA5 + S-JPEG2000 
(8.56%), S-PCA5 (8.95%), and CSS (14%).  
Figure 3 plots the averaged results of the various approaches from table I. Figure 
3(a) shows the error (%) results of the Ri estimates averaged over gray matter, white 
matter, and tumour, for various methods. Figure 3(b) plots the corresponding CVs of 
the Ri.  
Figure 4 shows the parametric images of LCMRGlc based on a pixel-by-pixel 
estimation using CSS, S-PCA5 and S-PCA5 + S-JPEG2000 for the simulated 
dataset. Figure 4(a) is the original last frame of plane #16 of CSS. Figures 4 (b) –(d) 
show the parametric images from CSS, S-PCA5 and S-PCA5 + S-JPEG2000 
respectively. The parametric image is relatively noisy using CSS compared with S-
PCA5 and S-PCA5 +S-JPEG2000. The mean squared error is used to validate the 
performance of CSS and S-PCA in terms of the parametric image generation against 
the ground truth (parametric image generated from noise free simulated data set).  
The MSE for CSS is approximately three times that of S-PCA5 + S-JPEG2000. MSE 
is 0.9763, 0.4331 and 0.3258 for CSS, S-PCA5 and S-PCA5 + S-JPEG2000 
respectively. Note: the MSE values calculated exclude the outside of the brain. For 
the simulation experiments, the results shown in table I and figures 3 and 4 indicate 
that our proposed compression method can reduce the noise and improve the 
accuracy and precision for parametric estimation compared with the original data.  
Figure 5 shows plane #20 of the dynamic reconstructed PET series for patient 3. The 
first row shows the eleventh, thirteenth, fifteenth, nineteenth and the final frame of 
original 22 frames of CSS; The second row contains the corresponding reconstructed 
images from the S-PCA5; The last row shows the corresponding reconstructed 
images from S-PCA5 + S-JPEG2000. The signal-to-noise ratio (SNR) of the 
reconstructed images from S-PCA5 and S-PCA5 + S-JPEG2000 is significantly 
improved. It is noted that the reconstructed images from S-PCA5 + S-JPEG2000 are 
slightly less noisy than that from S-PCA5, because JPEG2000 itself has a denoising 
effect. The results indicate that S-PCA5 + S-JPEG2000 not only can reduce the 
quantity of data in dynamic PET, but also improved the image quality of PET.  
Figure 6 gives a visual comparison of the parametric images based on a per-pixel 
estimation of LCMRGlc for CSS, S-PCA5 and S-PCA5 + S-JPEG2000 on one plane 
for two clinical datasets. The first column of images are the results obtained from 
CSS; the second column of images are the corresponding results from S-PCA5; the 
last column of images are the corresponding results from S-PCA5 + S-JPEG2000.  
Once again the results show the noise reduction achieved with S-PCA5 and S-PCA5 
+ S-JPEG2000 compared with CSS.  The better precision of the S-PCA5 + S-
JPEG2000 estimation is evident from the less noisy images, and there are fewer 
pixels that failed to converge to an estimate.   
Table II illustrates the performance of the proposed compression technique. In step 
one, the use of S-PCA5 to reduce the dimensionality of the data from typically 22 to 
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5 temporal frames provided a CR of 4.4:1. In step two, the five sinogram principal 
component channels were further compressed spatially by JPEG 2000, which gives 
an average compression ratio of 29.4:1. Finally the global compression ratio is 
approximately 130:1.  

6. Conclusion 

In this paper, we have investigated a new approach to dynamic PET data 
compression by temporal compression by sinogram-domain principal component 
analysis followed by spatial compression by applying JPEG2000 to the PCA 
sinograms.  Using a simulated phantom FDG brain study and three clinical studies, 
we evaluated the fidelity of the compressed data for estimation of local cerebral 
metabolic rate of glucose by a four-compartment model. The results indicate that this 
proposed compression technique not only can greatly reduce the quantity of data in 
dynamic PET, but also can improve the image quality of PET for quantitative 
analysis, while preserving the sinogram data for later analysis.   
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Figure 1. Mean squared errors of 5 PCA channels reconstructed from S-PCA5 + S-JPEG2000 
for patient, 1 plane #16 

 
 

     
First PC               Second  PC              Third PC          Fourth PC           Fifth PC 

     
CR =10:1            CR =33.3:1        CR = 50:1          CR =100:1          CR =100:1 

 

Figure 2. Top row shows the five PCA channels reconstructed from S-PCA5 and bottom row 
shows the corresponding five PCA channels reconstructed from S-PCA5 + S-JPEG2000 for 
patient 1, plane #16. 
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Error (%) of LCMRGLc (Ri) CV (%) of LCMRGLc (Ri) 

ROI CSS SPCA5 SPCA5 
+SJPEG2000 

CSS SPCA5 SPCA5 
+SJPEG2000 

Gray matter 3.55 0.55 1.53 9.61 5.56 5.09 
White matter 0.56 2.68 3.28 16.01 10.57 10.14 

Tumour 1.14 0.91 0.30 16.41 10.71 10.44 
Averaged 1.75 1.38 1.70 14.01 8.95 8.56 

Table I. Comparison of percentage Error and CV’s of LCMRGLc (Ri) for the simulated 
dataset (100 runs). 
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                               (a)                                                              (b) 

Figure 3. Comparison of accuracy and precision of estimation for LCMRGLc (Ri) by different 
methods - CSS, S-PCA5, S-PCA5 + S-JPEG2000 (SPCA5 + SJPG) for the simulated dataset.  
Fig. 3 (a) Averaged estimated errors (%) of Ri.  Fig.3 (b) Averaged CV (%) of Ri for the 
simulated dataset. 

     
      (a)Final frame               (b) Ri from CSS          (c)  Ri from S-PCA5   (d) Ri from S-PCA5 + 

           S-JPEG2000          

Figure 4.  Comparison of parametric images of LCMRGLc(Ri) formed with CSS, S-PCA5 and 
S-PCA5 + S-JPEG2000 (pixel-by-pixel approach) from simulated data (plane #16) with 
clinical noise and blur. The parametric image from CSS with the MSE of 0.9763. The last two 
images are parametric images from S-PCA5 and S-PCA5 + S-JPEG2000 and MSE is 0.4331 
and 0.3258 respectively. 

 Data set CR 
Original 22 frames 1.0:1.0 
S-PCA5 5 PCA channels 4.4:1 

S-JPEG 2000 5 compressed PCA channels 29.4 :1 
S-PCA5 + S-JPEG2000  129.4 :1 

Table II. Compression ratios for the simulated dataset and three clinical datasets.  
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(a) Dynamic images reconstructed from original 22 sinograms of CSS 

 
                    (b) Dynamic images reconstructed from S-PCA5 

 
     (c) Dynamic images reconstructed from S-PCA5 + S-JPEG2000 

Figure 5.  Dynamic reconstructed PET series for clinical patient 3, plane #20.  Fig .5 (a). 
Frames 11,13,15,17, 19 and 22 from the original 22 sinograms of CSS. Fig 5(b). 
Corresponding reconstructed frames from S-PCA5. Fig.5 (c) Corresponding reconstructed 
frames from S-PCA5 + S-JPEG2000.  Each image is scaled by its own maximum. 

          

          

Figure 6. Comparison of parametric images of Ri formed with CSS, with S-PCA5 and with S-
PCA5 + S-JPEG2000 based on pixel-by-pixel approach from patient 3,plane #20, patient 
2,plane #16. The first column shows the parametric images from CSS. The second column 
shows the corresponding parametric images from S-PCA5. The third column shows the 
corresponding parametric images from S-PCA5 + S-JPEG2000. Note: The black spots are 
unconverged pixels. 
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