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Abstract. Color quantization is the process of grouping n data points to k 
cluster. We proposed a new approach, based on Wu’s color quantization [6]. Our 
approach can significantly reduce the time consumption during the process 
compared with available methods but still maintain an acceptable quality of 
color distribution. As a rough rule of thumb [4], a quantized image with more 
than 30 dB of PSNR is often indistinguishable from the uncompressed original 
image.  To achieve this requirement, we proposed to put the cutting plane 
through the centroid of the largest value representing variance box on the 3D-
color histogram of color distribution. This plane is perpendicular to the axis, on 
which the sum of the squared Euclidean distances between the centroid of both 
sub-boxes and the centroid of the box is greatest. This guarantees that the total 
variances of sub-boxes are reduced automatically. To speed up the process, we 
exploited the dynamic programming as Wu [6] used in his approach. Unlike 
Wu’s approach, we replaced the second order moment calculation with a value 
representing variance. Because variance is not actually used in calculation, a 
simpler indicator of data scatterness would speed up the process. From our 
whole process, we achieved approximately 40% less time consumption than 
Wu's quantizer [6]. 

1 Introduction 

Although a full color system using 8-bit of each component (Red, Green and Blue) is 
commonly used now to specify the color of each pixel on the screen, color 
quantization is still a powerful method for color image size reduction. The quantizer 
converts the 24-bit/pixel color image into the 8-bit indexed color with a set of 
representative colors (256 typically). Therefore, the size of the quantized image is 3 
times reduced. This makes the color quantization process be fluently exploited for 
many applications especially in computer graphics and image processing. 
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This paper was organized as follows. In Section 2, we introduced the literature 
survey of color quantization. We explained our proposed approach in Section 3. 
Experimental results were introduced in Section 4. Finally, we concluded and gave 
some future works in Section 5. 

2 Literature Survey 

Over the past decade, there are a large number of approaches. Some proposed to adapt 
the excellent techniques such as neural network or fuzzy-logic to their quantizers. 
However, the entire process consists of compression and decompression. Schrader and 
Wittgruber [17] proposed the interesting method to reduce the runtime of visualization 
or decompression on CLUT devices. For our application, we emphasized in the 
runtime of compression process only and then those compressed streams are 
transferred to the external display device, i.e. LED display board. 

Generally, color image quantization can be separated into two steps for the 
compression algorithm i.e. palette design and pixel mapping. The first step involves 
the design of a palette in which a subset is chosen from the true color space. In the 
second step, input pixels of the original image are mapped to colors from the palette.  

2.1 Palette Design 

There are two general classes of quantization methods: fixed or universal palette and 
adaptive or custom palette. For fixed quantization, it is independent from the image 
contents, while for the adaptive quantization, a palette is designed adaptively to the 
image contents. The existing adaptive techniques to design a color palette can be 
divided into three categories [8].  
a) Hierarchical scheme or pre-clustering: Most of the proposed algorithms are 
based on statistical analysis of the color distribution of image pixels within the color 
space. The popularity [1], median cut [1], variance minimization [2], Octree [5] and 
Principal Analysis Algorithm [6] are all examples of this scheme. 
b) Iterative scheme or Post-clustering: It involves an initial selection of a palette 
followed by iterative refinement of this palette using the K-Means algorithm [7] to 
minimize the Mean Square Error. Fuzzy C-mean [9] is an extension of the K-means 
algorithm [7]. The Hierarchy Competitive Learning (HCL) [10], Genetic C-means 
Algorithm (GCMA) [11] and NeuQuant [13], exploiting the Kohonen Self-
Organizing-Maps [12] are all examples of this scheme. Two more hybrid methods are 
Local K-Means (LKM) [15] and Adaptive Color Reduction (ACR) [16]. LKM 
combined a K-Means quantization and Self-Organizing Map, while ACR consists of a 
principal component analyzer and a Kohonen Self-Organizing Feature Map (SOFM).   
c) Improved scalar quantization: There is a group of very simple algorithm which 
can be classified as based on improved scalar quantization rather than on vector 
quantization. Sequential scalar quantization [14] is an example of this scheme. 
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2.2 Pixel Mapping 

After obtaining the color palette, the next step is to map each input pixel in the image 
to a color in the palette.   
a) Brute-force algorithm: The straightforward way to find the best mapping. 
b) k-d Trees: The classical k-d tree method for nearest-neighbor search by orthogonal 
partitioning was proposed by Friedman [3].  
c) Locally Sorted Search: the locally sorted search technique was proposed by 
Heckbert [1]. It shows the greatest advantage over brute-force algorithm when the 
number of representative colors is large and when the colors in the input image have a 
wide distribution.  
d) Centroid Mapping: A faster, sub-optimal alternative to nearest-representative 
mapping is to use the partition obtained during the color palette design process and 
map the image colors to the representative, which is the centroid of the cluster 
containing the color.  

3 Our Proposed Techniques 

Clearly, a large number of papers proved that the hierarchical method is faster than the 
iterative method but it gives less quality than the latter. However, the hierarchical 
scheme cannot correct later for erroneous decisions made earlier. Since our target is to 
design a new quantizer for the time-critical applications. We thus proposed a new 
approach, which belongs to the hierarchical scheme. We exploited the dynamic 
programming according to Wu’s algorithm [6] proposed in 1992. His quantizer 
outperforms the early quantizers with respects to both computation time and 
quantization quality and is still mentioned in many papers now. Thus we also used 
Wu’s quantizer for comparison purpose.  

Our approach presented in Subsection 3.1 can reduce the computational time with 
an acceptable quality. The quality metric was also investigated in order to point out the 
performance of the quantizers in Subsection 3.2. 

3.1 Our Techniques for Color Quantization 

We separated the whole process of the color quantization into four phases according to 
Wu's approach; i.e. a) Histogram construction; b) Cumulative Moment Construction; 
c) Cutting Plane Positioning and d) Pixel Mapping. 
a) Histogram Construction Phase 

It is impractical to use the 24-bit/pixel resolution to construct the 3D histogram 
because 28x28x28 or 16,777,216 bytes of memories have to be allocated. Thus, we 
started with the same way as Heckbert’s approach [1]. A 25x25x25 or 32x32x32 color 
histogram, created from a 24-bit per pixel-color image by reducing the resolution of 
each color component to 5 bits, was processed first. Although a 32x32x32 3D 
histogram was employed, the human eyes cannot distinguish the pre-quantized image. 
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However the time consumption of this phase rather depends on the size of an input 
image. 
b) Cumulative Moment Construction Phase 

In this phase, the dynamic programming was exploited in order to avoid re-
computation of the value of mean and our value representing variance when 
positioning the cutting plane on the 3D-color histogram. We used Wu’s algorithm [6] 
to construct the bottom-up dynamic programming after 3D-color histogram was 
obtained. Unlike Wu’s algorithm [6], we eliminated this second-order moment 
distribution, which was employ to calculate the variance, because it produces the very 
high execution time. A value representing variance, mentioned in the next paragraph, 
was used instead of the actual variance. This value was investigated from the zeroth-
order moment which cumulate the frequency and the first-order moment which 
cumulate the frequency multiplied by its pixel value. Furthermore the point of which 
weight was less than 5, was ignored because of reduction of the discrepancy of this 
value representing variance. 

After we have already got the zero-order and first-order cumulative distribution, we 
can obtain the centroid of each box by using the summation and subtraction as defined 
in Equation (1).  
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where R[ ] is the cumulative Red pixels to that point (first-order moment of Red 
axis) 

Green and blue are also calculated in the same way. 
c) Cutting-Plane Positioning Phase 

The main difference among the other proposed approaches was how to position the 
cutting plane, which gives the optimal result. For our approach, we want to reduce the 
time consumption as much as possible while the PSNR, which we use as a criterion, 
should be more than 30-dB or in the other word, Mean Square Error should be less 
than 195. In this section, we showed that it does not need to use the multiple cutting 
planes to find the minimization of variance. We can put the cutting plane passing the 
centroid of the box to be perpendicular to the coordinate axis. Although, it does not 
obtain the best position, the quality is still acceptable as displayed in the results. 
However, it does not satisfy us in terms of time consumption, we proposed a value 
representing variance as mentioned earlier instead of the actual variance which 
requires the high computational cost. First of all, we evaluated the centroid of one box, 
which enclosed the colors of all pixels from the original image. After that we put the 
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three planes to be perpendicular to red-axis, green-axis and blue-axis. Consequently, 
eight sub-boxes were obtained. Then each centroid of these sub-boxes was calculated. 
These centroids were used as the representatives of the data in each sub-box. Equation 
(2) shows the value representing variance of the box. 
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This formula was also performed to find the largest value representing variance of 
the available divided box. The next step was to find the axis to be perpendicular. 
Clearly, that axis, which gives us the minimization of the sum of MSE of both divided 
boxes, should be selected. This guaranteed that the overall MSE was reduced 
automatically. Although MSE of total sub-divided boxes is greater than Wu's quantizer 
[6], it is still acceptable. We split this box at the centroid to be perpendicular to Red-
axis first. The centroid of each sub-box was obtained by using Equation (1) and then 
we calculated the sum of the squared Euclidean distances between the centroid of both 
sub-boxes and the centroid of the box.  The squared Euclidean distance was defined in 
Equation (3).  
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We exploited this distance for comparison among three axes. Equation (4) was 
evaluated for Red-Axis, and there we got the cutting plane, which was perpendicular 
to Red-Axis passing through the centroid of the box. Green and blue also were 
performed in the same way. 
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The largest summation among three axes of the squared Euclidean distance means 
that the upper box and the lower box clusters are dissimilar. Therefore, it should be 
separated into two boxes orthogonally on that axis. 

Figure 1 showed an example of the automatic reduction of total MSE of a resulting 
image. This tree guaranteed that the global MSE of the quantized image was reduced 
although this method cannot find the optimal cutting position. Certainly, Red-axis was 
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selected because it produced less MSE than the others and its squared Euclidean 
distance was the largest. 

 
 

 
 
 
 
 
 

 

 

 

Fig. 1. Variance Reduction Tree on “Mandrill” standard image 

d) Pixel Mapping Phase 
This was the final phase, we used the same algorithm as Wu’s quantizer [6], that is, 

the centroid mapping. The centroid mapping is very fast. It maps every color, which 
belong to that box, to its centroid. It is effective when the number of colors in the 
original image is smaller than the number of pixels in the image. Since the pre-
quantization to 15 bits is used, the number of colors will be under 32768. 

3.2 Quality Measures 

In fact, there is no good objective criterion available for measuring the perceived 
image similarity. However, there are a number of common error measurements, used 
in the color quantization community, i.e. Mean Squared Error (MSE) and Peak Signal-
to-Noise Ratio (PSNR).  

Peak Signal to Noise Ratio or PSNR measures the amount of useful data versus the 
amount of noise introduced into the image. Therefore, the higher the number, the more 
accurate the reconstruction. Below is the formula of PSNR calculation. 

)
)(

log(*10
2

MSE

imageoriginalMax
PSNR =

 

(5) 

As a rough rule of thumb [4], above around 30 dB images look pretty good and are 
often indistinguishable form the uncompressed original image. PSNR is a good 
measure for comparing restoration results for the same image, but between-image 
comparisons of PSNR are meaningless. One image with 30 dB PSNR may look much 
better another image with 30 dB PSNR. 

3D-Color Histogram 
MSE: 9169.15 
Value representing Variance:  314.617 

Red-Axis 
MSE: 5292.534 
Distance: 60.938 

MSE: 5472.504 
Distance: 58.486 

MSE: 6499.323 
Distance: 41.988 

Green-Axis 

Blue-Axis 
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Mean Square Error or MSE measures the average amount of difference between 
pixels of an image and its reconstructed image. If the MSE is small, the reconstructed 
image closely resembles the original. Below is the formula of the MSE calculation.  
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|| || stands for the Euclidean distance norm. 

4 Experimental Results 

All quantizers were tested on an Intel Pentium-II 350 MHz PC with 256 MB RAM, 
using Visual C++ 6.0 Compiler on Windows 2000 Professional Version. The 
execution time and the quantization error were adopted as the factors for evaluating 
the performance of the color quantization algorithms. Table 1 showed the comparison 
of the uniform quantizer, five existing quantizers downloaded from the public domain 
and our quantizer with respects to the computational time and quality. The quantized 
images were shown on figure 4. Next experiments, we concentrated on the comparison 

between Wu’s quantizer, which outperforms the others, and our quantizer. Figure 2 

and 3 showed the performance of both quantizers, based on PSNR and the execution 

time respectively on fifty test images. Table 2 presented the reduction of MSE after the 
number of representative colors was increased. In addition, Table 3 showed a 

breakdown of the computation times involved in four steps of Wu’s quantizer and our 
quantizer.  

Table 1. Execution time and Quantization Quality of different algorithms on a) “Mandrill”  
Image (512x512 pixels, 230,427 colors) and b) “Bird” Image (360x490 pixels, 126976 colors) .  

Quantizers Execution time (sec) MSE PSNR (dB)

Uniform 0.03 2056.01 18.59

Median-Cut 0.22 652.14 23.58

Variance-Based 0.24 178.01 29.22

Wu's Quantizer 0.19 118.63 30.98

Octree 6.84 196.40 28.79

NeuQuant (SF=1) 7.76 115.25 31.10

NeuQuant (SF=30) 2.36 192.56 28.88

Our Approach 0.10 150.58 29.94  
 

(a) 

Quantizers Execution time (sec) MSE PSNR (dB)

Uniform 0.02 2014.35 19.86

Median-Cut 0.18 425.32 26.61

Variance-Based 0.19 132.07 31.69

Wu's Quantizer 0.13 83.18 33.70

Octree 4.43 177.63 30.40

NeuQuant (SF=1) 4.74 88.18 33.44

NeuQuant (SF=30) 1.24 166.96 30.67

Our Approach 0.07 128.21 31.82  
 

(b) 
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Fig. 2. Comparison between Wu’s quantizer and our quantizer based on PSNR. 
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Fig. 3. Comparison between Wu’s quantizer and our quantizer based on the execution time. 

Table 2. MSE Reduction according to increasing the number of representative colors on a) 
“Mandrill” image and b) “Bird” image 

No. of Colors Quantizer MSE PSNR (dB)

Wu's 5246.20 14.53

Our Approach 5292.53 14.49

Wu's 2655.40 17.48

Our Approach 2879.24 17.13

Wu's 1273.88 20.67

Our Approach 1367.80 20.37

Wu's 778.17 22.81

Our Approach 846.01 22.45

Wu's 468.33 25.02

Our Approach 546.47 24.35

Wu's 288.35 27.13

Our Approach 375.51 25.98

Wu's 186.54 29.02

Our Approach 226.07 28.18

Wu's 118.63 30.98

Our Approach 150.59 29.95
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(a) 

No. of Colors Quantizer MSE PSNR (dB)

Wu's 3405.89 17.58

Our Approach 3619.19 17.32

Wu's 1788.39 20.38

Our Approach 2161.66 19.55

Wu's 1004.62 22.88

Our Approach 1108.60 22.45

Wu's 576.94 25.29

Our Approach 841.29 23.65

Wu's 346.28 27.51

Our Approach 453.94 26.33

Wu's 215.03 29.58

Our Approach 316.49 27.90

Wu's 131.80 31.70

Our Approach 207.36 29.73

Wu's 83.18 33.70

Our Approach 128.21 31.82

2
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(b) 

PSNR 
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Exe. time 

Sample No. 
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Table 3. Comparison between Wu’s quantizer and our quantizer based on a breakdown of 
computation time algorithms on a) “Mandrill” Image and b) “Bird” Image. 

Quantizers Wu's Quantizer Our Quantizer

Histogram (sec) 0.129 0.047

Moment (sec) 0.020 0.011

Palette Design (sec) 0.022 0.020

Pixel Mapping (sec) 0.016 0.017

Total (sec) 0.187 0.095  
 

(a) 

Quantizers Wu's Quantizer Our Quantizer

Histogram (sec) 0.073 0.031

Moment (sec) 0.020 0.011

Palette Design (sec) 0.022 0.019

Pixel Mapping (sec) 0.011 0.011

Total (sec) 0.126 0.072  
 

(b) 
 

   
 

   
 

 
 

(a) 

 
 

(b) 

 
 

(c) 

Fig. 4. “Mandrill” Image, “Bird” Image and “Flower” Image are quantized to 256 colors: a) 
Original, b) Wu’s quantizer and c) Our quantizer. 

5 Conclusion and Future Works 

A new approach has been proposed because of the requirement of time reduction. Our 
experiments show that our quantizer reduces the execution time for color quantization 
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process while the PSNR of 88% of one hundred test images is more than 30 dB, which 
is our limit quality. Our approach is suitable for the applications which required fast 
execution time and can display a full-color image using limited number of colors at a 
time such as a graphical signboard. However, a few test samples which are high 
quality photographic images with gradually shaded areas encountered a form of 
distortion of visible contouring in the specific area. This is the main point to be 
remedial in the future. We would like to thank NECTEC, Thailand for funding. 
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