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Abstract. How should one model a texture? Statistically? Structurally?
Or a bit of both? In this paper, we propose a method to help one decide.
We assume a texture contains a random and a structured component,
then estimate the proportion of energy in each component using a new
algorithm. The energy proportions indicate whether one texture compo-
nent dominates or an even mix exists. We implemented our algorithm on
known texture mixtures and obtained energy proportion estimates that
were accurate to ±0.003. This compares well to raw estimates made using
an established method. We also estimated the proportions of random and
structured components in natural textures taken from a public database.
We were able to order the 2D textures in a perceptually-reasonably way
using the estimated energy proportion of the structured component. Un-
fortunately the new algorithm showed signs of being directionally biased
and not invariant to non-uniform lighting conditions across a texture.
Thus further development is required.

1 Introduction

Many algorithms which segment or classify image texture assume either a struc-
tural model or a statistical model of texture. The most suitable model depends
on the texture itself. For example, the texture in Fig. 1a is highly structured in
two dimensions. It could be described by a primitive unit (a hole surrounded
by a local white region) regularly tiled in two dimensions using a certain set of
rules. Julesz [10] first proposed this structured model of texture, referring to a
texture’s primitive unit as a ‘texton’. The structured model of texture has been
adopted in [15, 1, 2, 16].

The texture in Fig. 1b, however, cannot be broken down into texture prim-
itives. It appears to be the result of a statistical process and would be better
described using a statistical model. The works of [7, 12, 4] focus on these type of
textures.

The texture in Fig. 1c presents a problem. It appears to be a mixture of a
structured texture component and a statistical texture component. Many natural
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(a) (b) (c)

Fig. 1. (a) A highly deterministic texture. (b) A highly random texture. (c) A texture
that contains a deterministic component and a random component. These textures are
from the VisTex public database [14].

textures are like this. Visually it is difficult to tell which component dominates
and therefore which texture model is more appropriate. May be neither compo-
nent dominates and a mixed model is required, as proposed in [5, 8, 13].

In this paper we propose a method of objectively estimating the proportion
of energy in the structured and statistical components of a texture. We apply out
method to synthetic textures of known composition and find our results accurate
to ±0.003 or 0.3%. This was superior to the accuracy of estimates made using
Liu and Picard’s algorithm [13]. Our method is designed for textures that exist
in two spatial dimensions, in greyscale (single band) images. The method can
be easily generalised for textures that exist in two spatial dimensions but multi-
band images, such as colour, by treating each image band independantly.

In Section 2 we explain how we estimate the proportion of energy in the
structured and statistical texture components. We also explain how Liu and Pi-
card estimate these proportions as part of their ‘Harmonicity Test’. In Section 4
we compare the results of the two methods in detail when applied to synthetic
textures of known composition. We also show the results of applying both meth-
ods to a range of natural textures from the VisTex database [14], where the
composition is unknown. In Section 5 we conclude that our energy proportion
estimates are a first step towards an objective measure of which texture model;
structured, statistical or mixed, is the most suitable for a particular texture.

2 Estimating the Mixture Proportions of a Texture

2.1 Our Method

We summarise our method of estimating the proportion of energy in the struc-
tured and statistical components of a texture by;

1. Subtract the texture’s mean grey value from the texture before computing
its 2D Discrete Cosine Transform (DCT).
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2. Determine the orientation and eccentricity of elliptical contours in the dis-
tribution of the texture’s DCT coefficients.

Then along each elliptical contour, k, calculate
3. the number of datums, Nk,
4. the sample mean, µk of the DCT coefficients,
5. the sample variance σ2

k of the DCT coefficients
6. and the cumulative probability of each DCT coefficient assuming that

(DCTi,j − µk)2/σ2
k follows a χ2 distribution with Nk degrees of freedom.

7. If the cumulative probability of a DCT coefficient is greater than a user-
defined threshold, t, classify it as caused by the structured texture compo-
nent.

8. Given that DCTSTRUCT are the set of coefficients classified as arising from
the structured texture component, calculate

ESTRUCT =
∑

i,j∈STRUCT

DCT 2
i,j , (1)

ETOTAL =
∑

i

∑

j

DCT 2
i,j , (2)

PSTRUCT =
ESTRUCT

ETOTAL
, (3)

PSTAT = 1 − PSTRUCT . (4)

In step 1 of the algorithm, we subtract the texture’s mean greyvalue before
computing the DCT because the global mean does not contain any texture in-
formation. From the work of [11], we expect that the DCT coefficients of the
statistical texture component follow a 2D Laplacian distribution. However we
don’t assume this. We do assume that the 2D distribution of DCT coefficients,

– is centred at (i, j) = (0, 0),
– is non-separable in the orthogonal spatial dimensions, i and j

– and its domain can be divided up into concentric partial ellipses (contours).
The DCT coefficients on a particular elliptical contour are assumed to come
from a particular Normal distribution.

In step 2 of our method we determine the orientation and eccentricity of the
elliptical contours using Principal Component Analysis (PCA) [6]. This means
we calculate the covariance of the distribution of DCT 2 coefficients in the two
dimensions i, j with respect to the origin (0, 0). The covariance matrix is made
up of the elements Ci,i, Cj,j , Cj,i and Ci,j given by

Ci,i =

∑
i

∑
j(DCT 2

i,ji
2)

∑
i

∑
j DCT 2

i,j

, Cj,j =

∑
i

∑
j(DCT 2

i,jj
2)

∑
i

∑
j DCT 2

i,j

,

and Ci,j = Cj,i =

∑
i

∑
j(DCT 2

i,jij)∑
i

∑
j DCT 2

i,j

. (5)

723

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



The first and second eigenvectors of this matrix are parallel to the major
and minor axes respectively of the elliptical contours. The orientation of the
first eigenvector relative to the positive i direction defines the orientation of the
elliptical contours. The ratio of the two eigenvalues defines the eccentricity of
the contours.

Underlying steps 3 - 7 of our method is our assumption that each DCT coef-
ficient arising from the statistical texture component follows a Normal distribu-
tion, DCTi,j ≈ N(µi,j , σ

2
i,j). We expect the means of these Normal distributions

to be the same for DCT coefficients located on the same contour. We estimate
this mean from the sample mean, µk, for each contour, k, in step 3.

The variances, σ2
i,j , of DCT coefficients on the same elliptical contour are not

necessarily the same. If we had multiple images containing textures generated
by the same stochastic process, we could calculate the sample variance for each
value of (i, j), to estimate each σ2

i,j . However, we have only one image of each
texture. Due to this limitation we cannot estimate each sample variance σ2

i,j

assuming each is independent of the others. For any progress to be made, we
must assume that the variance σ2

i,j for each DCT coefficient on the same contour
is the same. We estimate it in step 4 as the sample variance along each contour,
σ2

k.
Assuming that DCT coefficients on elliptical contour k are N(µk, σ2

k) dis-
tributed, the quantity (DCTi,j − µk)2/σ2

k should follow a χ2 distribution with
Nk degrees of freedom [9]. If the quantity (DCTi,j − µk)2/σ2

k is located in the
extreme tail of this distribution, it is atypical of the distribution. This will be
reflected by its cumulative probability being very high. In step 7 of our algorithm
we threshold the cumulative probability at the user-defined value t ∈ [0, 1]. We
presume that DCT coefficients that have a greater cumulative probability than
t arise from the structured texture component. Those that have a cumulative
probability below the threshold fit our model of the statistical texture compo-
nent well. The results of this thresholding step do depend on the chosen value
of t. We therefore applied the algorithm repeatedly using a range of t values for
each texture (Section 4) to find out the extent of parameter t’s influence.

Once the DCT coefficients arising from the structured texture component
have been identified, we calculate the proportion of energy in the structured and
statistical texture components using Eqs. (1)-(4).

2.2 Liu and Picard’s Method

Liu and Picard [13] proposed that a texture could be decomposed into harmonic
(2D periodic), evanescent (1D periodic) and random components in the Fourier
domain. This was conditional on a texture passing a ‘Harmonicity Test’. The
harmonicity test is based on the ratio of energy at small displacements, re, in the
texture’s auto-covariance function. From the spectral properties of time series [3]
it is known that random textures should have relatively high proportions of
energy at small displacements. Highly structured textures, however, should have
energy concentrated periodically through its auto-covariance function.

Liu and Picard calculate the ratio, re by;
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1. multiplying the texture image by a 2D Gaussian taper,
2. calculating the 2D auto-covariance function (ACF) of the tapered image,
3. thresholding the ACF at a percentage of the total image energy (threshold

specified by the user),
4. calculating the percentage of the total energy in the ACF which is connected

to the origin and is greater than the threshold.

The value of the ACF at the origin is ignored in this calculation since the texture
is independent of the image mean. Further details of the algorithm can be found
in [13].

We implement this algorithm in Section 4 using Liu and Picard’s code, pub-
licly available from ftp://whitechapel.media.mit.edu in directory
/pub/fliu/wold/. Although Liu and Picard did not base their harmonicity test
directly on their raw estimates of re (1− re), we do directly compare the values
with our estimates of PSTAT (PSTRUCT ) respectively. Our reason was that these
quantities were the most comparable quantities we found in the literature.

3 Test Images

To test the accuracy of our method, we generated a set of synthetic textures of
known composition. Each texture in the set was formed from a linear combina-
tion of either the purely random texture of Fig. 2a or Fig. 2b, and the purely
structured texture of Fig. 2c.

(a) (b) (c)

Fig. 2. Purely random textures containing iid pixel values from (a) a uniform distri-
bution and (b) a Normal distribution. (c) Purely structured texture.

Each of the images in Fig. 2 are 8-bit and 512× 512 pixels. The pixel values
in each random texture are independently and identically distributed. The pixel
values in Fig. 2a, however, are from a uniform distribution with zero mean,
whereas the pixel values in Fig. 2b follow a Normal distribution with zero mean.
The structured texture is a 2D cosine function with zero mean.

We also tested the performance of the two methods on greyscale version of
Fabric and Tile textures taken from the public VisTex database [14]. In this

725

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



database, each image of a fabric, food or tile texture is referred to by a unique
number within that texture type, eg. Fabric0000-Fabric0019. We refer to the
texture images using the same names and numbers in this paper, which explains
the choice of labels on the horizontal axes of Figs. 5a-d.

The VisTex textures were also 512×512 pixels in size but were not artificially
generated. Thus, we don’t know the actual proportions of energy in the struc-
tured and statistical components of these textures. The results of our algorithm
must be subjectively evaluated by eye for these cases.

4 Results

4.1 Synthetic Texture Results

Figure 3a and b show the error in our estimates of the proportion of energy in
the structured components of the set of synthetic mixed textures. The error is
plotted on the vertical axis and the known energy proportions are plotted on
the horizontal axis (which is not to scale). We have used box plots to show the
range of error obtained when variable t in step 7 of our algorithm was varied
from 0.5 ≤ t ≤ 0.999.

(a) (b)

Fig. 3. Error in our estimates of PSTRUCT (vertical axis) plotted against actual
PSTRUCT (horizontal axis) for various mixtures of (a) textures Fig. 2a and c, and
(b) textures Fig. 2b and c.

Similarly Figure 4 shows the error in using Liu and Picard’s quantity of
(1 − re) to estimate the proportion of energy in the structured components of
the set of synthetic mixed textures. We again use box plots to show the range of
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error because we varied the percentage threshold in step 3 of their method from
10% down to 0.01%.

(a) (b)

Fig. 4. Error in using Liu and Picard’s quantity (1 − re) to estimate PSTRUCT for
various mixtures of (a) textures Fig. 2a and c, and (b) textures Fig. 2b and c.

By comparing Fig. 3 with Fig. 4, we find our estimates of PSTRUCT are more
accurate than Liu and Picard’s quantity (1− re). Additionally our estimates are
more reliable. This is indicated by narrower box plots in Fig. 3 than Fig. 4.

Currently our method is run as a script under ‘R’. It takes longer to run than
Liu and Picard’s method, but their’s has been implemented in ‘C’. We therefore
only compare the accuracy of the two methods and not the computational speed.

4.2 Fabric and Tile Texture Results

The results of applying both methods to Fabric and Tile textures are shown
in Fig. 5. Again, we applied both methods repeatedly using different threshold
values. In the case of our method, 22 different thresholds were used in the range
0.5 ≤ t ≤ 0.999. In the case of Liu and Picard’s method, 20 thresholds in the
range 0.01% ≤ t ≤ 10% were used. The box plots show the range of PSTRUCT

estimates obtained for each texture as a result. The narrower box plots in Figs. 5a
and c indicate that our method is less sensitive to the chosen threshold value
than Liu and Picard’s method.

The centre markings of the box plots in Figs. 5a-d indicate that our esti-
mates of PSTRUCT respond more sensibly and consistently to the structured
component of the natural textures than the quantity (1− re). According to our
PSTRUCT estimates Tile texture 9 (Fig. 5h) has a greater proportion of structure
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(a) (b)

(c) (d)

(e) (f) (g) (h)

Fig. 5. (a) Our estimates of PSTRUCT for Fabric textures. (b) PSTRUCT estimates for
Fabric textures based on the quantity (1− re). (c) Our estimates of PSTRUCT for Tile
textures. (d) PSTRUCT estimates for Tile textures based on the quantity (1 − re). (e)
Fabric texture 18. (f) Fabric texture 5. (g) Tile texture 0. (h) Tile texture 10.
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than Fabric texture 5 (Fig. 5f), which in turn has more structure than Fabric
texture 18 (Fig. 5e). From visual inspection, this seems a reasonable result. In
contrast, the quantity (1 − re) suggests that Fabric texture 18 has around the
same proportion of structure as Tile texture 9!

However, our PSTRUCT estimates for the natural textures are not perfect.
Fabric texture 4, 5 and 6 all contain the same fabric, viewed from the same ori-
entation but imaged under different, non-uniform lighting conditions. We would
expect that our estimates of PSTRUCT should be very similar for these three
textures, but Fig. 5a shows that this is not the case. Our estimation method is
sensitive to these lighting changes. The difference in PSTRUCT for fabric texture
0 and 2 are also caused by changed lighting conditions.

Additionally our estimation method is directionally biased. This is evident
from our PSTRUCT estimates for Tile texture 9 and 10. Tile texture 10 is a
rotated version of Tile texture 9, yet our PSTRUCT estimate for Tile 10 is no-
ticeably smaller than for Tile 9. The directional bias also explains the difference
in PSTRUCT estimates for Fabric 0 and 1, Fabric 2 and 3, and partly explains
the low PSTRUCT estimate for Tile texture 0.

These two weakness in our estimation algorithm originate from the global
DCT used in step 1 of the algorithm. The global nature of the transformation
means that it is not invariant to non-uniform lighting changes across a texture.
The DCT is directionally biased because it extends all texture images by reflec-
tion at the horizontal and vertical image boundaries. This is a reasonably way
of extending textures like Tile 9 with principal directions in the horizontal and
vertical directions, but not rotated versions of them. We may be able to remove
these two weaknesses from our algorithm by replacing the global DCT with a
local wavelet transform, but further investigation is required.

5 Conclusion

We have presented a new method of estimating the proportion of energy in
the structured and statistical components of a two-dimensional image texture.
The results yielded were accurate to ±0.3% for synthetically generated textures.
Based on visual inspection, our method estimated the structured component of
natural textures more accurately and reliably than Liu and Picard’s quantity
(1− re) as well. Unfortunately the new algorithm does require further improve-
ments so to remove its directional bias and make it invariant to non-uniform
lighting conditions across a texture. This may be possible by replacing the use
of a global DCT in the algorithm with a local wavelet transform.

References

1. Asano, A., Ohkubo, T., Muneyasu, M., Hinamoto, T.: Texture Primitive Descrip-
tion Using Skeleton. Proceedings of the International Symposium on Mathematical
Morphology 2002, 101–107.

729

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



2. Asano, A., Endo, J.: Multiprimitive Texture Analysis Using Cluster Analysis and
Size Density Function. Proceedings of the International Symposium on Mathemat-
ical Morphology 2002, 109–116.

3. Cryer, I.D.: Time Series Analysis. PWS Publishers, 1996.
4. De Souza, P.: Texture Recognition via Autoregression. Pattern Recognition, 15(6),

471–475, 1982.
5. Francos, J.M., Meiri, A.Z., Porat, B.: A Unified Texture Model Based on a 2D

Wold-Like Decomposition. IEEE Transactions on Signal Processing, 41(8), 1993,
2665–2676.

6. Gnandesikan, R: Methods for Statistical Data Analysis of Multivariate Observa-
tions. 2nd Ed. John Wiley and Sons, Inc. 1997.

7. Hofmann, T., Puzicha, J., Buhmann, J.M.: Unsupervised Texture Segmentation in
a Deterministic Annealing Framework. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1998.

8. Hsu, T-I., Wilson, R.: A Two Component Model of Texture for Analysis and Syn-
thesis. IEEE Transactions on Image Processing, 7(10), 1998, 1466–1476.

9. Johnson, N.I., Kotz, S: Continuous Univariate Distributions-1. p75. John Wiley and
Sons, Inc. 1970.

10. Julesz, B.: Textons, the elements of texture perception and their interactions. Na-
ture, 290, March 1981, 91–97.

11. Lam, E.Y., Goodman, J.W.: A Mathematical Analysis of the DCT Coefficient
Distribution for Images. IEEE Transactions on Image Processing, 9(10), October
2000, 1661–1666.

12. Lee, T. C. M., Berman, M.: Nonparametric estimation and simulation of two–
dimensional Gaussian image textures. Graphical Models and Image Processing 59,
434–445, 1997.

13. Liu, F., Picard, R.W.: Periodicity, Directionality and Randomness: Wold Features
for Image Modelling and Retrieval., IEEE Transactions on Pattern Analysis and
Machine Intelligence, 18(7), July 1996, 722–733.

14. Picard, R., Graczyk, C., Mann, S., Wahman, J., Picard,
L., Campbell, L.: Vision Texture Database. http://www-
white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html,
Massachusetts Institute of Technology, USA, 1995.

15. Soille, P.: Morphological Texture Analysis: An Introduction. In Lecture Notes in
Physics 600, 215–237. Arch. Rat. Mech. Anal. 78 (1982) 315–333

16. Voorhees, H., Poggio, T.: Computing texture boundaries from images. Nature, 333,
May 1988, 364–367.

730

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney


