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Abstract. Curve detection is viewed as a process of hypothesis gener-
ation and hypothesis testing. Of the two, hypothesis generation has re-
ceived much attention and many sophisticated post-processing strategies
are published in the literature. In this work, the emphasis is shifted to
the development of an efficient and effective hypothesis testing strategy
to relieve the hypothesis generation from sophisticated computations.
The proposed method recasts edge pixels in a binary image into a one-
parameter system derived from the hypothesis. The recasting process
creates a histogram, which contains a single dominant peak if and only
if the hypothesis under testing contains a significant number of edge
pixels. Experiments with circle testing show that the proposed strategy
outperforms the global threshold.

1 Introduction

Curve detection is an elementary step in extracting shape information from
a binary image. In principle, curve detection can be viewed as a process of
hypothesis generation, which finds instances of curves that are likely to be in the
image, and hypothesis testing, which verifies that these instances do indeed exist.
While the strategy for hypothesis generation varies for different types of curve
detectors, (e.g., evidence accumulation in Hough transforms [1] and consensus
set computation in RANSAC methods [2, 3],) hypothesis testing is the common
step within a curve detection method to finally decide which curves to accept.

In Hough transforms, hypothesis generation and testing are closely coupled
in that the latter is conducted over the accumulators filled by the former. Ide-
ally, the accumulators should have the property that peaks contributed by true
positives are easily distinguishable from those due to false positives. In the ideal
case, it is straightforward to devise a high confidence threshold, which makes use
of simple statistics or prior knowledge, that accepts true positives and rejects
false positives. In practice, the fact that Hough transform is a one-to-many map-
ping from a discretized image space to a discretized parameter space inevitably
implies the certainty for peaks to split and merge in the parameter space. Thus,
some form of a peak-sharpening post-processing strategy is usually involved in
high performance Hough transforms, see the two surveys on Hough transform [4,
6]. Post-processing strategies increase computational complexity and difficulty in
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implementation. For example, the peak sharpening strategy of Gerig and Klein
[5] is accomplished by doing the Hough transform twice: the first pass does the
standard accumulation process and the second pass assigns each edge pixel to
the highest-counting cell that is intersected by its hyper-surface in the param-
eter space. The result is strongly sharpened peaks that allows true positives to
be distinguished from false positives, but at the cost of doubled computational
effort of a standard Hough transform.

Alternatively, hypothesis testing can be treated independently from hypoth-
esis generation. As two loosely coupled components, hypothesis testing requires
hypothesis generation to supply no more than the parameter vectors of candi-
date curves. A consequence of loose coupling is that an independent hypothesis
testing strategy can be used as a post-processing strategy to less sophisticated
but efficient curve detectors to improve performance. An example of indepen-
dent hypothesis testing is the global threshold, which counts the number of edge
pixels in the input image on the loci of a curve instance and compares it against
a pre-determined threshold. The global threshold is simple to implement, low
in computational complexity, and can be highly effective when supplied with
prior information on threshold setting. The principal disadvantage is in its lack
of statistical support in making an acceptance decision.

In this paper, an independent hypothesis testing strategy for curve verifica-
tion is proposed. The objectives are to provide a sound statistical foundation for
making acceptance and rejection decisions while keeping it comparable to the
global threshold in computational complexity and implementation simplicity. A
brief overview of the proposed strategy is as follows. To test an instance of curve
under detection, a one-parameter system of curves, which the instance is a mem-
ber of, is constructed. A transformation based on the one-parameter system is
created and applied to edge pixels in the image; the result is a one-dimensional
distribution-counting histogram of the edge pixels in the image against a range
of specific members of the one-parameter system. The instance is accepted if and
only if it coincides with the single dominant peak in the histogram.

2 Hypothesis testing

Let h be an instance of a curve (e.g., a line, a circle or an ellipse) found by
a hypothesis generation strategy such as Hough transform or RANSAC. The
instance h can be represented as a member of a one-parameter system of curves:

s(λ) = (1 − λ)s1 + λs2 = 0, λ ∈ �, (1)

where s1 = 0 and s2 = 0 are two distinct curves of the same type as h and
intersect h at one, two, or four points, respectively, if h is a line, a circle, or an
ellipse, respectively.

Edge pixels (x, y) in the image that h is extracted from can be mapped into
a one-dimensional parameter space with the function λs1s2 : �×� → � derived
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from Equation (1):

λs1s2(x, y) =
s1(x, y)

s1(x, y) − s2(x, y)
. (2)

Computationally, the mapping creates a histogram of the numbers of edge
pixels in the image coinciding with the loci of the curves of the system against a
range of λ. Thus, if h is indeed a true positive, the histogram is expected to have
a well-defined peak since edge pixels on h are mapped into the same value by the
function λs1s2 . Furthermore, we claim that no curves other than h or noises are
likely to produce a well-defined peak in the histogram. Let j be a curve that is
not a member of the one-parameter system constructed from h. Edge pixels on j
are distributed into the histogram such that each member in the one-parameter
system receives at most deg(j) · deg(h) votes from j, where deg is the algebraic
degree of a curve. For outliers categorized as uniformly distributed noise with
noise level γ, the number of noise edge pixels accumulated in a bin is a binomial
random variable [3] with an expected value of γB(λ), where B(λ) is the number
of pixels on the curve s(λ).

The above analysis allows one to conclude that in the histogram over a prop-
erly chosen range of λ, the presence of the single dominant peak indicates that
the hypothesis is statistically more likely to be a true positive than other curves.
This property allows us to devise an adaptive threshold; an example will be given
in Section 2.1. In contrast, when a hypothesis is accepted by a global threshold,
there is no statistical support for claiming that it is more likely to be a true
positive than other curves.

The proposed hypothesis testing strategy involves the following steps. (1)
Determine the range of λ and the base curves s1 = 0 and s2 = 0 from the
instance h and the input image. (2) Accumulate the histogram by applying the
function λs1s2(x, y) to edge pixels in the image. (3) Detect the existence of a
single dominant peak in the histogram. The time complexity of the proposed
strategy is as follows. The construction of base curves and the transform takes
constant time. The accumulation for testing a hypothesis takes O(n) time, where
n is the number of edge pixels in the input image. The statistics computation
takes O(m) time, where m is the number of bins in the histogram. Since m < n,
the overall computational complexity is O(n), which is asymptotically the same
as that of the global threshold.

Next, the process is illustrated with circle testing.

2.1 Circle testing

Construction of base curves. Let h be a circle with parameter (x0, y0, r0) found
by a hypothesis generation strategy from an image I. First, to limit the range
of interest of λ, we want to choose the base curves s1 and s2 so that λ(s1) <
λ(h) < λ(s2). One way to achieve this is to let the base curves have a radius
larger than that of the hypothesis. For example, by choosing base radius to be√

2r0 and designating λ(s1) = 0, λ(s2) = 1 and λ(h) = 1
4 , the one-parameter
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system (coaxal system [8]) is defined

(1−λ)((x−x0+
1√
3
r0)2+(y−y0)2−2r2

0)+λ((x−x0−
√

3r0)2+(y−y0)2−2r2
0) = 0.

(3)
The construction is illustrated in Figure 1.

h(x_0,y_0,r_0)

s_1(x_0-1/sqrt(3)r_0, y_0, sqrt(2)r_0)

s_2(x_0+sqrt(3)r_0, y_0, sqrt(2)r_0)

Fig. 1. Coaxal system of circles

Computing histogram. First, the number of bins in the histogram, which covers
the range of λ values in [0, 1], is decided. One way to do this is to set the number
of bins in proportion to the distance between the centers of the base curves. The
transform defined from coaxal system in (3) is

λs1s2(x, y) =
(x − x0 + 1√

3
r0)2 + (y − y0)2 − 2r2

0

8
3 (
√

3(x − x0)r0 − r2
0)

. (4)

Edge pixels in the image is mapped into the histogram. Note that λ values for
edge pixels mapped outside [0, 1] are discarded.

Detecting the single dominant peak in histogram. Based on analysis for the exis-
tence of a single dominant peak in case of a true positive, an adaptive threshold
for hypothesis testing can be devised. First, the sample mean X and sample
variance S2 [9] of the histogram except the peak are calculated. The hypothe-
sis is accepted if and only if its λ value coincides with that of the highest peak
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which has a count greater than X +wS, where w > 0 controls the final threshold
setting. A large w ensures a low false positive rate at the cost of a higher missing
rate. A small w ensures a low missing rate at the cost of a high false positive
rate. For a given w, the actual threshold adapts to the complexity of image since
the sample mean and the sample variance change as image complexity changes.
In contrast, the fixed threshold used in the global threshold is more sensitive to
the image complexity.

3 Experiments

In this section, the performance of the proposed hypothesis testing strategy
is compared with the global threshold in the context of circle detection. The
standard Hough transform for circle is used for hypothesis generation. The test
images are synthetic images containing three concentric circles of varying de-
grees of completeness in the presence of uniform pepper-and-salt noise. Table 1
summarized the parameters used to generate the test images.

Table 1. Parameters used to generate the test images

image size 50 × 50
noise levels 0%, 1%, 2%, 3%, 4%, 5%, 6%, and 7%
circle 1 center: (25,25), radius: 10; 30% of edge pixels missing
circle 2 center: (25,25), radius: 15; 40% of edge pixels missing
circle 3 center: (25,25), radius: 20; 50% of edge pixels missing

To compare the performance of the proposed method with the global thresh-
old, the following definitions are used.

– Nh: number of hypotheses generated by the standard Hough transform.
– w: the threshold control of the proposed method.
– n̄: the threshold control of the global threshold, defined as the number of edge

pixels on the loci of a circle in the image normalized by its circumference.
– Φ : range of operation. The range of thresholds that a hypothesis testing

strategy generates non-null results. For example, [0, 0.6] is the range of op-
eration for the global threshold if all hypotheses are rejected by a threshold
greater than 0.6.

– Φideal : ideal range of operation. The sub-interval of the range of operation
such that a threshold set in this sub-interval accepts all true positives and
rejects all false positives.

– φideal : coverage of ideal range of operation. The width of the ideal range of
operation divided by the width of the range of operation, i.e., φideal = |Φideal|

|Φ| .
In general, the larger φideal is, the easier it is to separate true positives from
false positives.
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– F : number of false positives accepted by the maximum threshold which ac-
cepts all true positives.

– tsht, tproposed, and tglobal: the execution time of the standard Hough trans-
form, the proposed hypothesis testing strategy, and the global threshold,
respectively.

The results of executing the proposed hypothesis testing strategy and the
global threshold against the test images are shown in Table 2 and Table 3. Note
that in proposed method, the hypothesis to test is located at λ = 0.25 and the
sample means and the sample variances are computed over [λ = 0, λ = 0.5]. As
can be seen, the proposed strategy performs consistently better than the global
threshold at all noise levels.

Table 2. Test results for the proposed strategy

image at noise level Nh Φ Φideal φideal F

0% 3 [0, 10.53] [0, 8.56] 0.81 0
1% 4 [0, 9.91] [4.20, 7.80] 0.36 0
2% 5 [0, 10.23] [3.11, 7.71] 0.45 0
3% 13 [0, 8.67] [4.32, 7.04] 0.43 0
4% 20 [0, 8.24] [4.00, 6.41] 0.29 0
5% 30 [0, 7.95] [3.51, 5.32] 0.23 0
6% 40 [0, 8.21] [4.11, 4.67] 0.07 0
7% 62 [0, 7.36] - - 1

Table 3. Test results for the global threshold

image at noise level Nh Φ Φideal φideal F

0% 3 [0, 0.67] [0, 0.46] 0.69 0
1% 4 [0, 0.69] [0.36, 0.46] 0.14 0
2% 5 [0, 0.69] [0.34, 0.46] 0.17 0
3% 13 [0, 0.73] - - 1
4% 20 [0, 0.73] - - 2
5% 30 [0, 0.77] - - 4
6% 40 [0, 0.78] - - 5
7% 62 [0, 0.8] - - 13

The comparison of execution times is in Table 4. In all test images, the
proposed method uses slightly more time than the global threshold. Note that
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both hypothesis testing strategies consume only a negligible amount of time in
comparison with the standard Hough transform.

Table 4. Execution time in seconds

image at noise level tsht tproposed tglobal

0% 0.651191 0.00124 0.001023
1% 0.778455 0.001684 0.001419
2% 0.864781 0.002129 0.001785
3% 0.912859 0.005546 0.004701
4% 0.998567 0.00883 0.007422
5% 1.12201 0.01335 0.01138
6% 1.14211 0.05721 0.05486
7% 1.27379 0.06555 0.06524

4 Concluding remarks

A hypothesis testing strategy for use in curve detection is proposed. The strategy
recasts edge pixels in an image into a one-parameter system. Computationally,
the proposed strategy is as efficient as the global threshold. Experiments on circle
testing show that it not only outperforms the global threshold strategy, but also
exhibits a wider and relatively stable ideal range of operation. Requiring no
more a collection of hypotheses as the input, it can be used as a post-processing
strategy to the standard Hough transforms [1], randomized Hough transforms
[7], and RANSAC based methods [2, 3, 10]. The implementation of testers for
lines and ellipses is not difficult and is underway.
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