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Abstract. A method the automatic detection of buildings from LIDAR
data and multi-spectral images is presented. A classification technique
using various cues derived from these data is applied in a hierarchic
way to overcome the problems encountered in areas of heterogeneous
appearance of buildings. Both first and last pulse data and the normalised
difference vegetation index are used in that process. We describe the
algorithms involved, giving examples for a test site in Fairfield (NSW).

1 Introduction

1.1 Motivation and Goals

Automation in data acquisition for 3D city models is an important topic of re-
search in photogrammetry. In addition to photogrammetric techniques relying
on aerial images, the generation of 3D building models from point clouds pro-
vided by airborne laser scanning, also known as LIDAR (LIght Detection And
Ranging), is gaining importance. This development has been triggered by the
progress in sensor technology which has rendered possible the acquisition of very
dense point clouds using airborne laser scanners [6]. Using high-resolution LI-
DAR data, it is not only possible to detect buildings and their approximate
outlines, but also to extract planar roof faces and, thus, to create models cor-
rectly resembling the roof structure [1], [8], [10].

With decreasing resolution, it becomes more difficult to correctly detect
buildings in LIDAR data, especially in residential areas characterised by de-
tached houses. In order to improve the performance of building detection, addi-
tional data can be considered:

– LIDAR systems register two echoes of the laser beam, the first and the last
pulse. If the laser beam is reflected at the bare soil, first and last pulse will
refer to the same object point. If the laser beam hits a tree, a part of the
light will be reflected at the canopy, resulting in the first pulse registered
by the sensor. The rest will penetrate the canopy and, thus, be reflected
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further below, maybe even at the soil. The last pulse registered by the sensor
corresponds to the lowest point where the signal was reflected [6].

– Along with the run-time of the signal, the intensity of the returned laser
beam is registered by LIDAR systems. LIDAR systems typically operate in
the infrared part of the electromagnetic spectrum. Unfortunately, given the
footprint size of the laser beam (e.g. 2-3 dm) and the average point distance
(e.g. 1-2 m), the intensity image is undersampled and, thus, very noisy [11].

– As building detection is a classification task multi-spectral images can pro-
vide valuable information due to their spectral content and because their
resolution is still better than the resolution of laser scanner data [9].

Apart from the problems related to sensor resolution, building detection is
also made complicated by the fact that buildings may have quite different ap-
pearances both with respect to their geometric dimensions and their reflectance
properties. Thus, it is often impossible to select appropriate thresholds and fil-
ter sizes for various algorithms. It is a well-known strategy in image matching
to apply algorithms to data having a lower resolution first to get approximate
values, refining these results in an iterative way, in each iteration considering
data of a better resolution than in the previous one, until the original resolution
is reached. It is the goal of this paper to present a new method for the auto-
matic detection of buildings of heterogeneous appearance from LIDAR data and
multi-spectral images making use of such a hierarchic approach. With respect to
the combination, or fusion [5] of these data, we currently apply heuristic rules
in the detection process. In the future, the proposed algorithm is to be used as
a module giving building candidate regions for a framework for feature based
data fusion as it is described in [7]. The examples presented in this paper were
computed using the LIDAR and image data from a test site in the Fairfield (New
South Wales) covering an area of 2 × 2 km2.

1.2 Related Work

There have been several attempts to detect buildings in LIDAR data in the
past. The task has been solved by classifying the LIDAR points according to
whether they belong to the terrain, to buildings or to other object classes, e.g.,
vegetation. Morphological opening filters or rank filters are used to determine a
digital terrain model (DTM) which is subtracted from the digital surface model
(DSM). By applying height thresholds to the normalized DSM thus created, an
initial building mask is obtained [12]. The initial classification has to be improved
in order to remove vegetation areas. In [2], this is accomplished by a framework
for combining various cues in a Bayesian network. They also use a hierarchic
strategy, turning the classification results of the coarser resolution into one of
the cues for the classification in the next iteration. The problem with their
approach is related the complexity of estimating the conditional probabilities
required for the Bayesian network. In [12], Weidner has tackled he problem of
precisely determining the building outlines by applying the minimum description
length principle for deciding on regularizations.
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In [7], a DSM derived by image matching and a colour image are fused on the
basis of the Dempster-Shafer theory. Fusion is carried out at feature level, the
initial segmentation being performed by a K-means unsupervised classification of
the colour images, using cues such as the normalised difference vegetation index
(NDVI) and the average relative height of the feature to distinguish buildings
from other objects. In order to overcome the deficiencies of the method used to
obtain the initial segmentation, it would be desirable to have the DSM take over
a more prominent role in the process, which is even more advisable if the DSM
is not created by image matching (which involves some sort of smoothing), but
derived from the LIDAR data.

In [8], we have presented an algorithm for building detection that relied on
DTM generation by hierarchic robust linear prediction [3], using the DTM and
DSM grids for further classification. The method has been shown to give good
results in densely built-up areas [8], but in more heterogeneous areas containing
houses of different sizes and also forests, tuning the parameters for DTM gener-
ation is not an easy task. In this paper, we will describe how that method has
been modified to consider the additional data sources and to work in a hierarchic
way without relying on hierarchic robust linear prediction.

2 Work Flow for Building Detection

The work flow for our method is depicted in fig. 1. The input to our method
is given by three data sets that have to be generated from the raw data in a
pre-processing step. The last pulse DSM is sampled into a regular grid by linear
prediction using a straight line as the covariance function, so that the interpo-
lation is carried out almost without filtering [8]. The first pulse DSM is also
sampled into a regular grid. The normalised difference vegetation index (NDVI)
is computed from the near infrared and the green bands of the multi-spectral
images we assume to be available [7]. These image data must be geocoded.

We start by creating a DTM from the last pulse DSM by morphological
grey scale opening using a square structural element. Initially, the size of the
structural element corresponds to the size of the largest building available in
the dataset. An initial building mask, basically a binary image of possible build-
ing pixels, is created mainly by thresholding operations. That building mask is
morphologically opened to eliminate spurious and strangely shaped building ar-
eas, and then connected components of building pixels give the initial building
regions. For these regions, we evaluate the surface roughness and the average
NDVI. In the first iterations, very tight thresholds are applied to surface rough-
ness, because we assume the largest buildings in the scene to consist of large
planar surfaces. Thus, we obtain an intermediate set of building regions, only
containing the largest and most salient buildings (corresponding to the current
state of the DTM). After that, the whole procedure is repeated with a smaller
structural element for morphological opening, but in the areas already classified
as buildings, the DTM heights of the previous iteration are substituted for the
results of the morphological filter. Thus, the buildings already detected are elim-
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Fig. 1. The work flow for building detection.

inated, whereas the smaller size of structural element for morphological filtering
helps to obtain a finer approximation for the DTM, rendering possible the sep-
aration of smaller buildings. The whole procedure is repeated with a decreasing
size of the structural element until a user-specified minimum size is reached. The
results of the final iteration are identical to the results of building detection, ba-
sically represented by a list of building regions and a building label image. In
section 3, we will have a closer look at the individual processing stages.

3 Stages of Building Detection

3.1 Morphological Filtering of the DSM

We assume the DSM to be a matrix containing the heights z(i, j), with integer
matrix indices i and j. For morphological filtering of the DSM, a structural
element W , i.e., a digital image w(m,n) representing a certain shape, has to be
defined. Restricting ourselves to symmetrical structural elements having constant
values, thus w(m,n) = w(−m,−n) and w(m,n) = 0 ∀[m,n] ∈ W , morphological
opening is performed by first carrying out an morphological erosion,

z = min
[m,n]∈W

z(i − m, j − n) (1)

followed by a morphological dilation,

z = max
[m,n]∈W

z(i − m, j − n) (2)
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yielding the morphologically opened height matrix z(i, j) [12]. The resulting
height matrix does not contain objects smaller than the structural element W .
If W is chosen to be greater than the largest building in the data set, all buildings
are removed by morphological opening; however, if W is too large, terrain details
might be removed, too. If W is chosen rather small, the results of morphological
filtering will be closer to the original height matrix and, thus, to the terrain, but
larger buildings will remain in the data set. This is the reason why we apply
morphological filtering in the hierarchical framework described in section 2.

3.2 Generation of the Initial Building Label Image

Morphological filtering provides us with an approximation for the DTM. As
described in section 2, for buildings already detected, the DTM generated by
morphological opening in the previous iteration is substituted for the results
of morphological filtering, so that large buildings that would be preserved by
morphological filtering in the current iteration are eliminated beforehand. An
initial building mask is created by thresholding the height differences between
the last pulse DSM and the DTM (e.g., by hmin=2.5 m). This initial building
mask still contains spurious regions, areas covered by vegetation, and terrain
structures smaller than the structural element for morphological filtering. In
addition, individual buildings might not be separated correctly.

At this instance, the additional data sources can be used to improve these
results. First, a large NDVI indicates areas covered by vegetation, so that pixels
having an NDVI above a certain threshold are erased in the building mask.
Second, as pointed out in section 1.1, the heights from first and last pulse data
will differ mainly in areas covered by trees and if the laser beam accidentally hits
the roof edge of a building. Thus, in most cases, large height differences between
first and last pulse data indicate trees. Pixels having a height difference larger
than a certain threshold are erased in the building mask, too.

A binary morphological opening filter using a structural element of a size
corresponding to the expected minimum size of a building part (e.g., 3 × 3 m2)
is applied to the initial building mask to erase oddly shaped objects such as
fences and to separate building regions just bridged by a thin line of pixels. A
connected component analysis of the resulting image is applied to obtain the
initial building regions. Regions smaller than a minimum area are discarded.

3.3 Classification of Building Candidate Regions

Some of the initial building regions correspond to groups of trees or to terrain
structures smaller than the structural element. These regions can be eliminated
by evaluating a surface roughness criterion derived by an analysis of the second
derivatives of the DSM. In [4], a method for polymorphic feature extraction is de-
scribed which aims at a classification of texture as being homogeneous, linear, or
point-like, by an analysis of the first derivatives of a digital image. The thresh-
olds required for that classification are derived automatically from the image
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data. This method is applied to the first derivatives of the DSM using an inte-
gration kernel of a size corresponding to, e.g., 5 m in object space. Under these
circumstances, “homogeneous” pixels correspond to areas of locally parallel sur-
face normal vectors, thus, they are situated in a locally planar neighbourhood.
“Linear” pixels correspond to the intersections of planes. Finally, “point-like”
pixels are in a neighbourhood of great, but anisotropic variations of the surface
normal vectors. This is typical for building corners and for trees. For evaluating
surface roughness, the numbers of “homogeneous” and “point-like” pixels are
counted in each initial building region. Buildings are characterised by a large
percentage of “homogeneous” and by a small percentage of “point-like” pixels.
By comparing these percentages to thresholds, non-building regions can be elim-
inated. The surface roughness criterion works well for large buildings and with
dense LIDAR data [8]. If the point distance of the LIDAR data is larger than,
e.g., 1 m, only few LIDAR points will be situated on small buildings, so that
the percentage of “homogeneous” pixels is reduced, whereas the percentage of
“point-like” pixels is increased. Thus, it makes sense to additionally evaluate the
average NDVI for each building region to eliminate vegetation areas.

Finally, vegetation areas still connected to buildings are eliminated. By mor-
phological opening, regions just connected by small bridges are separated. The
resulting binary image is analysed by a connected component analysis which
results in a greater number of regions, and the terrain roughness criterion is
evaluated again. Pixels being in regions now classified as containing vegetation
are erased in the initial building label image. Thus, in vegetation areas originally
connected to buildings, only the border pixels remain classified as “building pix-
els”. Again, morphological opening helps to erase these border pixels [8].

4 Experiments

4.1 Description of the Data Set

The test data set was captured over Fairfield (New South Wales) using an Optech
ALTM 3025 laser scanner. Both first and last pulses were recorded, the aver-
age point distance being about 1.2 m. We derived DSM grids at a resolution
of 1 m from these data. Intensity data were available, too. We used an area of
2 × 2 km2 for our test. For that area, a true colour digital orthophoto with a
resolution of 15 cm was available. The orthophoto was created using a DTM,
so that the roofs and the tree-tops were slightly displaced with respect to the
LIDAR data. Unfortunately, the digital orthophoto did not contain an infrared
band. We circumvented this problem by resampling both the digital orthophoto
and the (infrared) LIDAR intensity data to a resolution of 0.5 m and by comput-
ing a “pseudo-NDVI-image” from the LIDAR intensities and the green band of
the digital orthophoto. Apart from problems with georeferencing caused by the
displaced tree canopies in the orthophoto, there were also problems with shadow
areas in the orthophoto, so that the “pseudo-NDVI-image” did not provide as
valuable an information as the NDVI image was supposed to be. Still, it helped
in classification. The input data for our test are shown in fig. 2.
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Fig. 2. The Fairfield data set. Upper row, left: The DSM (black: low areas, white: high
areas). Upper row, right: The colour orthophoto. There are industrial buildings in the
northern central regions and residential houses in the west and south-west. Second row,
left: The “pseudo-NDVI-image”. Second row, right: The height differences between first
and last pulse data (black: large differences). Total area: 2000 × 2000 m2.

4.2 Results

Fig. 3 shows the results of morphological opening of the DSM in fig. 2 using
structural elements of two different sizes (150 m and 25 m). Using the large
structural element, all buildings can be eliminated, but the terrain shape is not
well preserved, so that the residential buildings in the lower part of the scene
are merged. This can be seen in fig. 4, showing the initial building mask derived
using the left DTM in fig. 3 (height threshold: 2 m). Using a smaller structural
element, more terrain details are preserved, but the large buildings are still
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Fig. 3. The results of morphological opening of the DSM using structural elements of
150 × 150 m2 (left) and 25 × 25 m2 (right).

contained in the data. However, using our hierarchic approach, these buildings
can be eliminated beforehand, as described in section 2.

The results of texture classification are presented in fig. 5 (filter kernel size:
3 × 3 pixels). Note the co-incidence of clusters of “point-like” pixels and vege-
tation areas such as those along the creek passing through the scene diagonally,

Fig. 4. The initial building mask corre-
sponding to the left DTM in fig. 3. The
residential buildings on a small hill at the
southern border are merged.

Fig. 5. The classification results of poly-
morphic feature extraction. White: “ho-
mogeneous”, light grey: “linear”, black:
“point-like”.
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which is used to eliminate trees. In the first iteration, starting from the initial
building mask in fig. 4, we only accept regions larger than 2500 m2, containing
less than 0.30% of “point-like” and at least 70% of “homogeneous” pixels, thus,
large regions consisting of mostly planar roof planes. As the industrial buildings
had a high reflectivity in the infrared part of the spectrum, the threshold for
the “pseudo-NDVI” was kept at 75%. 85 mostly large building structures are
detected in the first iteration (left part of fig. 6).

Fig. 6. Buildings extracted in the first (left) and third (right) iterations.

Altogether three iterations were carried out,
using structural elements of 150 m, 75 m, and
25 m. In the final iteration, regions larger than
25 m2, containing less than 85% of “point-
like” and at least 1% of “homogeneous” pix-
els were accepted. These relatively loose set-
tings of the threshold were a consequence of
the LIDAR resolution, with only few points
and, thus, few “homogeneous” pixels on the
roofs of the smaller buildings. 1589 buildings
were detected (right part of fig. 6). The param-
eters for classification were chosen in a way to
minimise the number of missed buildings, ac-
cepting a larger rate of false alarms. Less than
1% of the buildings were not detected.

Fig. 7. Boundary polygons super-
imposed to the orthophoto.

Fig. 7 shows the orthophoto of a part of the test area super-imposed by the
boundary polygons of the buildings. There remain some trees in the data, and
some of the buildings are still merged, especially if the distance between them is
small. However, as almost all the buildings are contained in the data, it might
be possible to improve the results of classification by considering additional cues
derived, for instance, from the colour images.
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5 Conclusions and Future Work

We have presented a hierarchic method for building detection from LIDAR data
and multi-spectral images, and we have shown its applicability in a test site of
heterogeneous building shapes. In our test, we put more emphasis on detecting
all buildings in the test data set than on reducing the false alarm rate because
in the future we want this method to be the module for initial segmentation in
a framework using more sophisticated methods of data fusion similar to those
described in [7], replacing the rather heuristic methods used up to now. In or-
der to further improve the segmentation results and to split building regions
erroneously merged, the results of a segmentation of the orthophoto could be
considered. Using the NDVI computed from real infrared images rather than
the “pseudo-NDVI” used in this test might also help to improve the results.
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