Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

Computing Image-Based Reprojection Error
on Graphics Hardware

John Bastian and Anton van den Hengel

The University of Adelaide, Adelaide, South Australia
Centre for Sensor Signal and Information Processing, Mawson Lakes, South Australia
john,anton@cs.adelaide.edu.au

Abstract. This paper describes a novel approach to the problem of
recovering information from an image set by comparing the radiance
of hypothesised point correspondences. This method is applicable to a
number of problems in computer vision, but is explained particularly in
terms of recovering geometry and camera parameters from image sets.
The algorithm employs a cost-function to represent the probability that
a hypothesised scene description and camera parameters generated the
reference images and is characterised by its ability to execute on graph-
ics hardware. Experiments show that minimisation of the cost-function
converges to a valid solution provided there are adequate geometric con-
straints and projective coverage.

1 Introduction

Computing geometry in scene space is a relatively new approach towards com-
puter vision problems that confers a number of advantages over feature-based
algorithms. A number of these techniques rely on pixelwise comparison across an
image set to recover information. The comparisons are usually carried out to find
evidence to support or reject an hypothesised set of parameters, allowing conclu-
sions to be drawn about the parameter space from repeated application of this
process. The key to these approaches is pixelwise comparisons: a mathematically
straightforward but computationally expensive process that requires computing
occlusions and comparing projections of points. We present a method accelerat-
ing both these problems using commercially available graphics hardware.

One application of the graphics-based technique is towards the recovery of
static geometry from a set of reference images. Solutions to this problem have, in
general, focused on computing correspondences between features in the source
images. These features are used to calibrate the cameras and compute a re-
construction. The quality of the camera calibration depends on the accuracy
of these features. In contrast, the graphics-based approach compares synthetic
images of a hypothetical scene with the reference images. There are a number of
advantages to this approach, including the ability to recover scene shape without
determining dense correspondences and its capacity to consider global structure
when making local changes.

663

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

An example of this type of technique is space carving, which validates a
hypothesised surface by considering the projection of each scene point into the
reference images [1] [2] [3] [4]. The initial hypothesis is a conservative shape
provided by the user guaranteed to encompass the reference geometry. A carving
iteration validates every point by searching for projections that are inconsistent
with the reference views. A point is considered valid if its projection fits a locally-
computable light model in all images where it is visible; such points are said to be
photo-consistent. A new hypothesised surface is created with inconsistent points
removed. This changes the surface’s visibility and requires further image-based
comparisons until it converges to a state where no further points are removed.

Smelyansky et al use a similar basis to recover a height-map and make small
changes to camera parameters from an initial feature-based estimate [5]. This
approach considers entire images rather than determining photo-consistency for
each point. Their algorithm, however, does not model occlusion, allowing their
system to compute the derivative of the image with respect to parameter changes.
New views are generated by applying the derivative to the last synthetic image.
These synthetic images are compared with the reference images.

Both space-carving and Smelyansky’s approaches treat reconstruction as a
problem of colouring a hypothesised scene and comparing the results with the
reference images. Computing the photo-consistency and generating new views
involves finding the unoccluded projection in each image of a sub-set of the sur-
face. Determining occlusion can be expensive, particularly if the scene structure
is time-consuming to traverse or is not able to optimise the number of visibility
tests. Searching detailed volumetric structures can be time-consuming because
a large number of volume elements must be scanned to confirm that no opaque
regions are closer to the camera than a given point.

1.1 Graphics hardware

Computing occlusion is a fundamental task in computer graphics that is ef-
ficiently addressed by graphics hardware. Modern Graphics Processing Units
(GPUs) implement a pipeline organised in a series of transformations, clipping
and rasterisation steps. Surfaces represented by triangles are sent to the pipeline
as a stream of vertices where they are transformed and clipped by the vertex
processor. The transformed triangles are rastered into a collection of fragments.
This process linearly interpolates vertex attributes—such as texture coordinates
computed by the vertex processor—and binds the new values to each fragment.
The fragment processor uses these attributes to apply colour to the frame-buffer,
which may involve referring to texture elements (tertels) from the currently
bound textures. The fragment processor is capable of performing operations on
the fragment’s attributes with the values sourced from the frame-buffer or other
texture units.

This paper will describe a system that uses graphics hardware to test hy-
pothesised parameters of the imaging process. These parameters are minimised
by comparing the reprojection error between the reference images and synthetic
images of the hypothetical scene. The synthetic images are computed on graphics

664

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

hardware to leverage the inherent parallelism from an otherwise idle computa-
tional resource.

2 The photo-consistency cost function

Scenes that generate the reference images when imaged with the reference cam-
era parameters are said to be photo-consistent, a property held by real, static
scenes. The reprojection error is a measure of how closely the hypothetical scene
recreates the reference images. This photo-consistency metric is used to reject
hypothetical scene configurations, but this is an under constrained problem be-
cause there is an uncountably-infinite set of scenes can also be photo-consistent
with a finite set of images [6].

A
i ;

P4 5/ e

s ”
The diffuse model Observing uniform light Non-uniform light is not
uniformly scatters light. supports the model. consistent with the model.

Fig. 1. Points on the surface can be assigned radiance parameters consistent with the
reference images. Points not on the surface can appear to reflect light inconsistent with
the model because the observed radiance is actually from different real scene points.

A point is photo-consistent if its light model can be assigned a parameter
vector that model the point’s projection in all reference views. This vector is
usually a single colour to fit the diffuse light model, although more complicated
models such as Phong [7] and Blinn [8] could be used. The only restriction on the
choice of light model is that it must be locally computable; that is, the observed
radiance must be independent of geometry elsewhere in the scene. This allows a
consistency function to determine whether a point is consistent while ignoring
global illumination properties such as reflection and refraction. It is not often
possible for points that do not exist on the true surface to have suitable, globally-
consistent radiance parameters because the back-projection of a point not on the
true surface will actually map to different real scene points (see Figure 1). It is
reasoned that such points are not part of the reference scene.

If we restrict the class of reference scenes to those that only contain diffuse
light then the projection of a point in every image should be a similar colour.
The probability that n images belong to this light model can be expressed by

665

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

considering every pair images from that set and computing

) (> erfor(p,Ci,Cj,Ii,Ij)) (1)

1j=1,5#i \ peVis(C;)

n
0=

i=
the reprojection error as a measure of how dissimilar a coloured hypothesised
scene point is from the reference images. Here, [C, Z] and [C’, '] are two cameras
and their reference images. We term these cameras the ‘source’ and ‘destination’
because the source camera is used to texture the scene that is then imaged by
the destination camera.

The reprojection error is computed by texturing every scene point visible in
the destination camera and comparing its projection in the destination reference
image. The radiance observed by the destination camera C’ with respect to the
source [C, Z] is then

rad(p,C,C’',T) = Z(C x closest(p, C")). (2)
If we denote the camera’s extrinsic matrix asM, then the function

closest(p, C) = argmin [Mo— Mo~ "0, (3)

vEprojectionset(p,C)

computes the closest point to a camera from
projectionset(p,C) = {v € V|Cv=p}, (4)

the set of all scene-points that project to the pixel in the destination image.
The synthetic radiance of a pixel is compared with its corresponding pixel in the
destination image for photo-consistency by

error(p,C,C',Z,7") = consistency(rad(p, C,C',Z),Z'(p)) x occ(p,C,C’).
(5)
The occlusion function weights the reprojection error for a pixel so only scene-
points seen by both cameras are able to contribute to the error. This function is

defined by

oce(p, C, C’) = 1,if closest(p, C) = closest(p, C’)

= 0, otherwise.

(6)

Under the diffuse light model, the likelihood that two points are photo-consistent
is inversely proportional to the distance between the two colours

consistency(p;, p;) = sz - ij, (7)

ie. the error is the distance between the colours in RGB space.

666

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

3 Computing photo-consistency on graphics hardware

Generating synthetic images from geometry described by triangles has received
considerable attention from hardware vendors to the point where powerful com-
mercially available graphics hardware—capable of processing millions of textured
triangles per second—is relatively inexpensive [9]. Such graphics hardware can
be leveraged to accelerate most of the cost-function by exploiting the inherent
parallelism in graphics processing, caching data in the frame-buffer and using
multiple texture references to combine the results of previous computation. The
cost-function is implemented with three render passes: one pass to compute the
occlusion of the scene in each camera and a final pass to compute the difference
between the synthetic and real images.

3.1 Computing source camera occlusion

The first pass renders the scene from the source camera’s view-point. This pass
stores the set of points closest to the source camera in the depth buffer. Since
only the depth buffer is important for this step, the colour buffers are disabled
to decrease bandwidth across the video bus. The depth buffer represents the
results of equation (3) for each point in the source camera and is cached in
texture memory for later use. The colour buffers are then enabled and the depth
buffer reset for the second pass.

3.2 Generating the surface texture

The second pass renders the scene from the destination camera’s view-point. This
pass implements equation (2) by generating a synthetic view of the scene with
the texture mapped from the source image in a similar approach to Weinhaus et
al [10]. Tt also computes equation 6 by storing the set of pixels used to compare
with the destination’s reference image.

The source image is back-projected onto the hypothesised scene using au-
tomatically generated texture coordinates. This is used to project the source
camera’s image onto the scene by using the source camera’s projection matrix
as the generation function. Texture is applied by linearly interpolating texture
coordinates for each fragment within the triangle and copying the textel indexed
by the texture coordinates to the frame-buffer. Textures mapped in this way are
perspectively correct because texture coordinates are interpolated in homoge-
neous space.

Every triangle will have a valid projective texture because OpenGL’s tex-
ture space is tiled [11]. This replicates the source image throughout the scene,
attributing colours to scene points that are not visible by the source camera.
These scene points will erroneously contribute to the cost when compared with
the destination image if the incorrect assignments are left unchecked. Depth tex-
tures are used to track scene points occluded from the source camera by binding
the depth buffer computed in the first render pass as a shadow map [12]. Figure

667

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

8

|?p

\
Py
|\ source
v
'
1)

Fig. 2. The first pass computes the depth to each point visible by the source camera
(2). The second pass textures the scene (ii). The third pass tests the depth of each
fragment with the shadow map (4ii).

destination

Fig. 3. Images generated by the cost-function for the second test with true parameters.
The source image () is mapped to the scene (i7). Occluded pixels are stored in the
a-channel (#7) and used to delete occluded pixels (iv). The synthetic view with true
parameters closely resembles the destination image (v).

2 illustrates how the source image is propagated through the scene and how
shadow maps are used to mask pixels occluded in the source camera.

Texture references to the shadow map are generated with the same function
used to compute references to the source image. Instead of returning a coloured
textel, shadow map references return a-textels as a function of the texture co-
ordinates and the corresponding depth in the shadow map. Three-dimensional
texture coordinates are computed for fragment: the first two elements are the
point’s projection in the source image and the third element is the distance be-
tween the fragment and the source camera. If the depth indexed by the first two
coordinates is further than the depth to the source camera, then the fragment
is not the closest point to the source camera. In this case, the shadow texture
reference returns « < 0 to indicate the fragment is occluded. The textel a «+ 1
is returned if the test succeeds. An example of the texture scene and its shadow
map is in Figure 3.

3.3 Comparing the synthetic and reference images

The reference destination image is composited with the synthetic image using
the approach described by Duff [13] to implement equation 7. This is done using
the blend operation composite = as — ad where s and d are the synthetic and
destination pixels and « is taken from from the frame-buffer’s a-channel. The
final colour is the difference of the two colours if the pixel back projects to a

668

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

scene-point visible by both cameras but is [0,0,0,0] when the scene point is
occluded in the source camera since a = 0.

Fig. 4. Images generated by the cost-function for the second test with incorrect param-
eters. The source image is mapped to the scene (i) and occluded pixels are removed
(i1). The result is stored in the accumulation buffer (4ii).

The frame-buffer holds the colour disparity between two reference images
with respect to the hypothesised scene. This result is stored in the accumulation
buffer with weight (n? —n)~! [14]; an example of an accumulated buffer is in
Figure 4(iii). The process from section 3.1 is repeated for every pair of images,
each taking turns as a destination and source.

The final step is to compute the total reprojection error from each image pair.
This is not easily computed on graphics hardware for three reasons: fragments
cannot refer to adjacent pixels; the precision of colour channels is not sufficient;
and OpenGL clamps pixels that exceed saturation. There are some techniques
that could be used to partially accelerate the area-sum on hardware, including
using floating-point buffers and ‘shuffling’ the frame-buffer through repeated
rendering. Our approach, however, copies the frame-buffer to system memory
and iterate over the pixels on the CPU.

4 Synthetic tests

The cost function was implemented with OpenGL 1.4 to test how it behaves
when the imaging parameters are changed. Synthetic tests were used to provide
ground truth as we are still evaluating whether the approach is valid. The input
images were generated with the Persistence of Vision ray-tracer.

4.1 Estimating focal length

The first test was to determine if focal length could be estimated from synthetic
images of a calbration grid when all other parameters known. Figure 5 graphs
the relationship between the change in focal length and reprojection error. It
demonstrates two important observations: the cost-function is minimised near
the true focal length but is biased towards zero as the focal length increases.

669

Proc. VIlth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

§ 0.20

£
@ 0.15
=

2 0.10
ot
20.05

Fig. 5. The relationship between change in focal-length of a stereo-pair and the repro-
jection error

4.2 Estimating geometric parameters

The second test involved five cameras surrounding a cube upon a plane (see
Figures 3 and 4) so that at least two cameras could see every side of the cube not
on the ground plane. The cameras were considered calibrated, but the position,
rotation and uniform scale of the box were left unknown.

¥ Transiation X Transiation

Fig. 6. The reprojection error as the Fig.7. The reprojection error as the

cube’s translation is varied. The true po- cube’s rotation and scale parameters are

sition is at [0, 0]. varied. The true parameters are 0(90) de-
grees rotation and 1.0 scale.

Figure 6 graphs the cost-function when the scale and rotation are fixed at
their true value but the position of the cube is varied. The cost is minimised
near the true position and approaches a constant value as the box is moved.
The constant value is a result of pushing the box out of the camera’s visual

670

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

hull where the error is from the projection of the source images onto the static
ground plane.

Figure 7 graphs the cost-function with the position fixed at the true location
but with varying rotation and scale parameters. The graph near the true param-
eters is characterised by an apparent dominance in change of scale over rotation,
but this is because scale has a much greater impact on the error while the cube’s
projection in each camera is relatively small. The impact is small because the
silhouette of a cube remains relatively constant from different viewing-angles; we
would expect an increased change in error if the shape was more complicated.
The cost-function approaches a minimum in two key areas: the first minimum is
at the true parameters, found within the valley where scale=1.0; and the second
is when the rotation approaches 0 as the scale increases. This minimum reflects
a bias against occlusion.

5 The occlusion bias

The cost-function biases occlusion because it relies on comparing scene points
visible to a pair of cameras. The reprojection error is consequently minimised
if there are no visible scene points to contribute to the error, leading to a bias
that pushes the parameters so no geometry is visible. This problem is apparent
in both tests. Increasing the focal length reduces the field of view of each camera
to the point where each camera projects its image onto a small part of the scene
not visible by the other camera. Similarly, each camera’s projection on the scene
is reduced when the cube’s scale is increased. Useful geometric parameters can
be found if appropriate priors to constrain the parameter space. The focal length
test would benefit from this by capping the focal length to ranges that generate
sensible field-of-views.

The visibility bias cannot be overcome by penalising occluded pixels. If the
cost-function is modified to include a default penalty for occluded pixels, then
problem becomes one of deciding what penalty to apply. If the bias is too low
then the cost function will bias occlusion (its current behaviour, since the weight
is effectively 0); however, if it is too high then it will tolerate significant incon-
sistency to minimise occlusion. The ideal solution would involve an a priori
estimation how much geometry is visible in pairs of cameras.

6 Conclusion and Future Work

There are a number of advantages to using a graphics-based approach towards
recovering scene information. The key advantage is that parameter changes has
a global consequence to the shape’s reprojection. These approaches shift the
problem from image-processing into one where changes are made in scene-space
so they are consistent when imaged with the reference cameras. The key to these
approaches is comparing an hypothesis with the images which involves compar-
ing unoccluded scene points with the images. Our goal was to accelerate this
comparison in graphics hardware. We re-parameterised the colour consistency

671

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

cost function so it can be mapped on graphics hardware. This cost function shows
that it is minimised near the true parameters provided parameters are clamped
to prior ranges and a sufficient number of cameras to reduce the visibility bias.

The difficulty with the reconstruction framework is its reliance on the param-
eterised scene model provided by the user. The initial scene graph is constructed
with a geometry modeller that allows the user to define constraints on parameter
ranges. It is planned for future work to use a hierarchical scene model to alleviate
both the demands on the user to provide the initial geometry and minimise the
number of free parameters. This system would optimises a coarse model and then
refine the estimate by breaking polygons with a high reprojection error, loosen
the scene parameters and re-optimise. An example of this is recovering sides of
buildings that are not flat from brick extrusions. It is hope the inital cube model
would locate the general area of the building and successive partitioning would
resolve the bricks.

References

1. Culbertson, W.B., Malzbender, T., Slabaugh, G.G.: Generalized voxel coloring.
In: Workshop on Vision Algorithms. (1999) 100-115

2. Seitz, S., Dyer, C.: Photorealistic scene reconstruction by voxel coloring. Proc.
CVPR (1997) 1067-1073

3. Kutulakos, K.N., Seitz, S.M.: What do photographs tell us about 3d shape? Tech-
nical Report TR692, Computer Science Dept., U. Rochester (1998)

4. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Technical Report
TR692 Computer Science Dept., U. Rochester (1998)

5. Smelyansky, V.N., Morris, R.D., Kuehnel, F.O., Maluf, D.A., Cheeseman, P.: Dra-
matic improvements to feature based stereo. In: Proc. European Conference on
Computer Vision. (2002)

6. Poggio, T., Torre, V., Koch, C.: Computational vision and regularization theory.
Nature 317(26) (1985) 314-319

7. Phong, B.: Illumination for computer generated images. Communications of the
ACM 18 (1975) 311-317

8. Blinn, J.F.: Models of light reflection for computer synthesized pictures. ACM
Computer Graphics SIGGRAPH 19(10) (1977) 542-547

9. Thompson, C.J., Hahn, S.,; Oskin, M.: Using modern graphics architectures for
general-purpose computing: a framework and analysis. In: Proc. Computer Graph-
ics and Interactive Techniques. (2002)

10. Weinhaus, F.M., Devarajan, V.: Texture mapping 3d models of real-world scenes.
ACM Computing Surveys 29(4) (1997) 325-365

11. Segal, M., Akeley, K.: The OpenGL graphics interface. Technical report, Mountain
View, CA,USA (1993)

12. Segal, M., Korobkin, C., Foran, J., Haeberli, P.: Fast shadows and light effects
using texture mapping. In: Proc. Computer Graphics and Interactive Techniques.
(1992)

13. Porter, T., Duff, T.: Compositing digital images. In: Proc. Computer Graphics
and Interactive Techniques. (1984)

14. Haeberli, P., Akeley, K.: The accumulation buffer: hardware support for high-
quality rendering. In: Proc. Computer Graphics and Interactive Techniques. (1990)

672

