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Abstract.  In this paper, we propose a robust method to estimate the 
fundamental matrix in the presence of outliers. The new method uses random 
minimum subsets as a search engine to find inliers. The fundamental matrix is 
computed from a minimum subset and subsequently evaluated over the entire 
data set by means of the same measure, namely minimization of 2D reprojection 
error. A mixture model of Gaussian and Uniform distributions is used to describe 
the image errors. An iterative algorithm is developed for estimating the outlier 
percentage and noise level in the mixture model. Simulation results are provided 
to illustrate the performance of the proposed method. 

1 Introduction 

A basic problem in computer vision is recovering 3D construction of a world scene or 
object from a pair of images. There are many approaches developed to solve this 
problem, which can be classified into stratified reconstruction methods [1] and direct 
reconstruction methods [2]. Projective reconstruction is a necessary first step in all 
these approaches. 

The epipolar geometry describes two-view projective geometry. The epipolar 
geometry can be expressed in terms of the fundamental matrix. The fundamental matrix 
contains all geometric information necessary for establishing point correspondences 
between two images, from which projective reconstruction of the scene or object can be 
inferred. Therefore, projective reconstruction for two views becomes a problem of 
estimating the fundamental matrix. 

The fundamental matrix is estimated using point correspondences between two 
images. The difficulties in estimating the fundamental matrix lies in the fact that there 
are often a fair proportion of mismatches in a given set of point correspondences. It is 
therefore important that the method used for estimating the fundamental matrix should 
be robust in the presence of mismatches. 

There existing several methods for the robust estimation of the fundamental matrix 
[3]. M-Estimators [4, 5] reduce effect of inliers with large noise or outliers by 
applying weight functions, reducing the problem to a WLS (weighted least-squares) 
problem. Practically, M-Estimators are not so robust to outliers. RANSAC (RANdom 
Sample Consensus) technique [2] is a simple and successful method in robust 
estimation. RANSAC removes the effect of outliers by using random sampling as a 
search engine for inliers in the data set. Each solution is determined by a random 
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minimum subset and evaluated against the entire data set for consistency. In detail, 
RANSAC calculates the number of supporting correspondences for each solution and 
the one that maximizes the support is chosen.  A group of robust methods are 
developed based on RANSAC. LMedS [6] (Least Median Squares) is similar to 
RANSAC, except for the way to determine the best solution. LMedS evaluates each 
solution in terms of the median Symmetric Epipolar Distances of the data set and 
chooses the one which minimizes this median. The MLESAC [7] (Maximum 
Likelihood SAmple Consensus) is a generalization of RANSAC using the same point 
selection strategy. MLESAC maximizes a likelihood which is a mixture model of 
normal distribution (for inliers) and uniform distribution (for outliers) instead of the 
number of supporting correspondences. The parameter of the model is estimated by 
expectation maximization (EM). MAPSAC [8] (Maximum A Posteriori SAmple 
Consensus) improves MLESAC by maximizing the posterior estimation of the 
fundamental matrix and matches. MAPSAC provides new evaluations to check the 
consistency of each solution with the data set. 

In this paper, we will propose two improvements to the robust estimation of the 
fundamental matrix. First, in RANSAC like methods, the result will depend critically 
on the choice of a scoring function for evaluating solutions. The scoring function is 
defined in terms of parameters such as the proportion of inliers γ  and the noise level 

σ  corrupting the inliers. It is essential that reasonable estimates of these parameters be 
provided. In the MLESAC method of [7], γ  is estimated iteratively, but σ  is 

estimated only a priori and a posteriori (before and after) the estimation of γ . Since 

the scoring function depends directly on both γ  and σ , we propose in this paper that 

a better way is to estimate γ  and σ  together within an iterative algorithm. This 

would provide a more accurate estimate for both parameters. The accuracy of these 
parameters has an implication on the reliability of the scoring function. Secondly, in 
most methods, the fundamental matrix is estimated from a minimum subset using the 
seven-point [2] or the eight-point algorithm[9], which minimize an algebraic error 
with no geometric meaning.  We propose that a minimization of the 2D reprojection 
error in computing the fundamental matrix is more appropriate. This is because the 
fundamental matrix is then evaluated in terms of reprojection errors associated with 
image points of the entire data set. It is important that a consistent measure is used in 
the initial determination and subsequent evaluation of the fundamental matrix, as these 
errors will be used in a scoring function for discriminating inliers and outliers.  

This paper is organized as follows. Section 2 briefly introduces robust estimation of 
the fundamental matrix. In section 3, the proposed robust method is described in detail. 
In section 4, simulation results are provided to illustrate the performance of the 
proposed method. In section 5, a conclusion is given. 

2 Robust estimation of the fundamental matrix 

Consider point correspondences in two images projected from an object. The set of 
points { } , 1, ,i i n=x K  in the first image and the set of corresponding points 

{ }' ,  1, ,i i n=x K  in the second image are related by 
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T' 0,    1, ,i i i n= =x Fx K  (1) 

where the 3 × 3 matrix F  is the fundamental matrix and T( , ,1)i x y=x  is in 
homogeneous form. The fundamental matrix has seven degrees of freedom because it is 
of rank two and defined only up to scale. Therefore at least seven point 
correspondences are required for calculating the fundamental matrix. 

The fundamental matrix is computed from a set of point correspondences 

( ){ }, ' 1, ,  i iS i n= =x x K . Points are recognized as corner points by a corner detector 

and matched as correspondences by a matching algorithm. In practice a set of point 
correspondences may be corrupted by noise or contain mismatched correspondences. 
So it is necessary to discriminate the set into inliers and outliers. Inliers refer to 
correctly matched correspondences and outliers refer to mismatched correspondences. 

For a data set with a given proportion γ  of inliers, the number of trials N  

required to give sufficiently high probability p  to pick an outlier-free subset 
consisting of r  point correspondences is  

log(1 ) / log(1 )rN p γ= − −  (2) 

The general framework of existing robust methods can be summarized as followings: 
1. Repeat N  times where N  is adjusted adaptively using (2) when γ  is 

updated. 
a. Select a minimal subset subS  from the data set S  according to a 

sample selection strategy. 
b. Compute jF  from the subset subS  (e.g. seven-point algorithm, eight-

point algorithm)  
c. Evaluate the consistency of F  with all point correspondences of the 

data set S . 

i. Calculate error { }2
ie  for each point of the data set S  with 

jF .  

ii. Evaluate jF  by a scoring function which discriminates the 

data set into inliers and outliers. 

2. Select best solution over a set of solutions { } ,  1, ,j j N=F K  according to their 

scores. 
3. Steps may be performed to improve the result of step 2. 
Various robust estimation methods (like RANSAC, MLESAC and MAPSAC) differ 

in one step or another, with step 1(c) being the focus of recent research interest.  
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3 A new robust method 

We propose a robust method which makes two improvements within the above 
general framework, namely in stage 1(b) and 1(c)(ii). In stage 1(b), existing methods 
typically use the seven-point or the eight-point algorithm to determine F by minimizing 
an algebraic error and a different error measure may be used in step 1(c) for evaluating 
F. For reasons of consistency, we would suggest (see Section 3.1) to use the 
minimization of the 2D reprojection error both in the determination and the evaluation 
of F. In stage 1(c)(ii), the evaluation of the scoring function requires the estimation of 
the γ  and σ . We will propose a new iterative algorithm for estimating these 

parameters (see Section 3.2).    

3.1 Determination and evaluation of F  by minimization of 2D reprojection 
error 

The 2D reprojection error of all corresponding points in a pair of images is defined as 

$ $

2 2( , ) ( ', ')i ii i i
i i

e e d d= = +∑ ∑ x x x x  subject to $ $' 0 i i i= ∀x Fx . (3) 

It can be interpreted geometrically. Each correspondence ( , ,1)i i ix yx , '( ', ',1)i i ix yx  

defines a single point denoted ( , , ', ')i i i i ix y x yX  in a measurement space 4
� . The 

corrected measurement denoted � $ $ $ $( , , ', ')i i ii ix y x yX  lies on a variety Hυ  defined by 

the constraint in (3). ( , )d ⋅ ⋅  is the Euclidean distance between the points. The task of 

minimizing the 2D reprojection error is to find a variety Hυ  and �{ }iX  which are 

closest points on the variety Hυ  to { }iX . 

The 2D reprojection error is proven to be more superior than other geometric error. 
The minimization of 2D reprojection error is often applied in evaluation step 1(c). But 
it is usually not applied in other steps of the algorithm. In our algorithm, we will solve 
the fundamental matrix by minimizing the 2D reprojection error. 

The problem of the fundamental matrix estimation can be described as 

$

{ }

$

2 2

=    

min ( , ) ( ', ')i ii i
i a subset of data

d d+∑F
x x x x  subject to $ $' 0 i i i= ∀x Fx . (4) 

We use the factorization method of Tang and Hung [11] to solve this problem. The 
method iteratively minimizes the 2D reprojection error by evaluating estimated camera 
matrix, 3D points and projective depth each at a time. 

Given an estimate of the fundamental matrix, we will evaluate the consistency of 
correspondence ( ), 'i ix x  in S  with F  by the optimal triangulation method 

$ $

$ $
2 2

, '
min ( , ) ( ', ')

i i

i ii id d+
x x

x x x x  subject to $ $' 0 i i =x Fx . (5) 
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Optimal triangulation [10] is a linear triangulation method which converts the 
least square functions to one parameter functions and finds the global minimum.  

3.2 Mixture model parameters estimation 

A scoring function is introduced to evaluate how the fundamental matrix fits with the 
data set (more exactly inliers) [8]. The scoring function is defined as: 

2( )i
i

C eρ=∑  where  

2

2
2

2
2

2

 
( )

    

i
i

i

i

ee T

e
e

T T

σ
σρ

σ
σ

 ⋅ ≤
= 
 ⋅ >

 (6) 

with a modification on the scorings compared with the one in[8].  
In (6), T  is a threshold for discriminating outliers from inliers, defined by  

2

2

1
2log( ) ( ) log( )

2

L
T D d

γ
γ πσ
−= + −  

(7) 

where 2L represents the size of the search window for performing matches in the two 
images, D is the dimension of point correspondences { }iX and d is the dimension of 

the variety Hυ . Note that the contribution of each inlier to the scoring function 
depends on its error whereas each outlier increases the scoring function by a constant. 

The scoring function performs well when all the components { }2
ie ,σ  and γ  are 

estimated correctly. In the previous section, we have considered how the 2D 

reprojection error { }2
ie  may be minimized. In this section, we will propose a new 

iterative estimator of σ  and γ . 

First, we will model the probability distribution of 2D reprojection errors for both 
inliers and outliers of the data set as a mixture density [12]. We assume that the noise 
of inliers is a zero-mean Gaussian distribution, whereas the matching error for outliers 
is a uniform distribution. Thus, the error for each correspondence in the entire data set 
is a multivariate mixture model of the Gaussian and uniform distribution in D  
dimensions given by 

2

22

1 1
( | ) exp( ) (1 )

22

D

i
i

e
p e

v
σ γ γ

σπσ

 
= − + − 

 
 

 (8) 

In (8), γ  is the prior probability of the inliers occurring, σ  is the standard 

deviation of the Gaussian distribution on each coordinate of point correspondences, and 

{ }2
ie  are the 2D reprojection errors associated with point correspondences in the data 
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set, which can be regard as unlabeled samples drawn independently from the mixture 

density. v  indicates the volume of the bounded space within which outliers are 

expected to fall uniformly. Put 4D =  as { }2
ie  is observed in 4

� . Regarding the 

state-conditional probability function (8) as a likelihood function and then by 

maximizing the likelihood of the mixture model, σ  and γ  can be estimated using an 

iterative method. Suppose ( �
kσ , $

kγ ) are already available, ( � 1kσ + , $ 1kγ + ) can be 

computed using the following recursive formulas: 

$

1
1 n

ik
i

z
n

γ + = ∑  (9) 

where 

$

� �

$

� �

$

2

2
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2
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2 2

1 1
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  
 −      =

  
 − + −      

 (10) 

and �

( ) ( )
$

2 2

1

1

n n

i i i i
i i

k

i k
i

z e z e

D z n D
σ

γ
+

+

⋅ ⋅
= =
∑ ∑

∑
 (11) 

Algorithm 1 
The algorithm of mixture model parameters estimation can be summarized in 

following steps: 
1. Given a fundamental matrix F , the optimal triangulation is performed to obtain 

the 2D reprojection errors  { }2
ie  for the entire data set. 

2. Set the initial estimate 0
1

2
γ =  and 

( )2

0

imedian e

D
σ =  

3. Estimate posterior probability { } ,  1, ,iz i n= …  for the data set from the current 

estimate kγ  and kσ  using (10). 

4. Make a new estimation of 1kγ +  (9) and 1kσ +  (11) from the current Maximum 

likelihood estimation { }iz . 

5. Step 3 and step 4 are repeated until both 1kγ +  and 1kσ +  are convergent 
(typically need five times).  
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3.3 Algorithm summary 

Based on the above discussion on the determination and evaluation of the fundamental 
matrix and the mixture model parameter estimation, we suggest a new robust algorithm 
for computing fundamental matrix. The objective of the algorithm is to determine the 
maximum likelihood estimation of the fundamental matrix which is optimal under the 
assumption that inliers obey Gaussian distribution and outliers obey uniform 
distribution. 

Algorithm 2 
The algorithm of robust estimation of the fundamental matrix 
1. Randomly sample a minimum subset of point correspondences 

( ){ , ' 1, , }j i iS i n= =x x K  and estimate jF  by factorization method of [11]. 

2. Perform the projective reconstruction to obtain �{ }iX  in 3D space and calculate the 

2D reprojection error { }2
ie  for the data set by the optimal triangulation. 

3. Use Algorithm 1 to estimate the percentage of inliers γ  and the standard deviation 

σ  of measurement noise on each coordinate of image points. 
4. Compute the threshold T  by (7) to discriminate inliers and outliers.  
5. Compute the scoring function for jF  using the equation (6).  

6. Go to step1 until N  trials. Update N  by (2) using γ  if necessary. 

7. Select the best solution for which the scoring function has the smallest value. 

4 Experimental Results 

Two sets of experimental results will be given to illustrate how Algorithm 1 (for 
mixture model parameter estimation) and Algorithm 2 (for robust estimation of the 
fundamental matrix incorporation the mixture model parameter estimation) work.  

4.1 Experiment on parameter estimation algorithm 

In this experiment, Algorithm 1 for estimating the parameters of a mixture model is 
tested. The experimental results are derived from independent tests on 100 sets of 200 
point correspondences with varying percentages of outliers. Gaussian noise is added to 
each coordinate of the image points. The standard deviation of noise is from 0.5 to 3 
pixels (in 600 ×  800 images) with 0.5 pixel increment. The ground truth fundamental 
matrix is used in Step 1 of Algorithm 1 to compute 2D reprojection error, from which 
the percentage of outliers and noise level are estimated using Algorithm 1. The mean 
and standard deviation of the percentage errors in the estimation of γ  are given in Fig. 

1. 
For the purpose of comparison, the result of estimating γ  using the MLESAC 

method of [7] is given in Fig. 2. We note that the method used in MLESAC requires 
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an exact estimate of noise level to achieve good results. Our method performs 
noticeably better than the MLESAC method, reducing the percentage error in the 
estimated parameter γ  by a factor of 1.5 in most cases. 
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(a)              (b) 

Fig. 1. (a) The mean and (b) the standard deviation of percentage error in the estimated γ  
(relative to ground truth) for our method. 
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(a)                                 (b) 
Fig. 2. (a) The mean and (b) the standard deviation of percentage error in the estimated γ  

(relative to ground truth) for MLESAC method. 

4.2 Experiment on our robust method 

In this experiment, the performance of Algorithm 2 is tested using synthetic data. The 

accuracy of the solution �F  will be assessed using the Sampson distance measure [2]: 

$( )
$( ) $( ) $ $

2' T

2 22 2 T T' '

1 2 1 2

F1

F F F F

n
i i

sampson
i

i i i i

d
n

=
   + + +   
   

∑
x x

x x x x

 (12) 

640

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



       

where $( )F i j
x  refers to the j-th entry of $F ix . The underlining symbol ix  indicates 

the noise-free data.  
The experimental results are derived from independent tests on 50 sets of 500 point 

correspondences. The image size is 600 ×  800. On each coordinate, the standard 
deviation of Gaussian noise σ  is 1 pixel. The percentage of outliers 1 γ−  is 
increased from 5% to 30% in increments of 5% steps. Our method is compared with 
MAPSAC. The simulation results show that our method performs noticeably better than 
MAPSAC method though both methods have a small proportion (about 6%) of failures 
in reconstructing acceptable solutions. These bad solutions have been excluded from 
the calculation of the mean Sampson distance shown in Figure 3.        
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Fig. 3. The mean of the Sampson distance of the solutions estimated by our method and 
MAPSAC (after eliminating 3 bad solutions among total 50 solutions). 

 

5 Conclusion 

In this paper, a robust method has been developed to give an accurate estimation of the 
fundamental matrix in the presence of outliers. Our method differs from existing 
method in two ways. First, we minimize the 2D reprojection error in both the 
determination and evaluation of the fundamental matrix, in contrast to other methods 
which do not necessarily use a consistent measure throughout the entire process. 
Secondly, we estimate both unknown parameters γ  and σ  in a mixture model for 

image errors of inliers and outliers. These mixture model parameters are estimated 
together within an iterative algorithm, which provides better results than existing ones. 

641

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



 

References 

1. M. Pollefeys. Self-calibration and metric 3D reconstruction from uncalibrated image 
sequences. PhD thesis, EAST_PSI, K.U.Leuven, 1999.  

2. R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge  
University Press, 2000. 

3. X. Armangue and J. Salvi. Overall view regarding fundamental matrix estimation. Image 
and Vision Computing 21 (2003), pp.205–220. 

4. Z. Zhang, R. Deriche, O. Faugeras and Q.-T. Luog. A robust technique to image matching: 
Recovery of the epipolar geometry. In Proc. International Symposium of Young 
Investigators on Information\Computer\Control, Beijing, China, 1991, pp7–28. 

5. P.H.S. Torr and D.W. Murray. The development and comparison of robust methods for 
estimating the fundamental matrix. International Journal of Computer Vision 24 3 (1997), 
pp. 271–300. 

6. Z. Zhang. Determining the epipolar geometry and its uncertainty: a review. International 
Journal of Computer Vision 27 2 (1998), pp. 161–198. 

7. P.H.S. Torr and A. Zisserman. MLESAC: a new robust estimator with application to 
estimating image geometry. Computer Vision and Image Understanding 78 (2000), pp. 
138–156. 

8. P.H.S. Torr. Bayesian model estimation and selection for epipolar geometry and generic 
manifold fitting. International Journal of Computer Vision 50 1 (2002), pp. 35–61. 

9. R.I. Hartley. In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 19 6 (1997), pp. 580–593. 

10.R.I. Hartley and P. Sturm. Triangulation. Computer Vision and Image Understanding, 68 2 
(1997), pp. 146–157. 

11.W.K. Tang and Y.S. Hung. A factorization-based method for projective  reconstruction 
with minimization of 2-D reprojection errors. In Proceedings of DAGM 2002, Zurich, Sept, 
2002, pp. 387–394. 

12.R.O. Duda, P.E. Hart and D.G. Stock. Pattern Classification (2nd ed.). John Wiley & Sons 
Inc, 2001. 

642

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney


