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Abstract. The mean shift (MS) algorithm is sensitive to local peaks. In 
this paper, we show both empirically and analytically that when using 
sample data, the reconstructed PDF may have false peaks. We show 
how the occurrence of the false peaks is related to the bandwidth h of 
the kernel density estimator, using examples of gray-level image 
segmentation. It is well known that in MS-based approaches, the choice 
of h is important: we provide a quantitative relationship between false 
peaks and h. For the gray-level image segmentation problem, we 
provide a complete unsupervised peak-valley sliding algorithm for gray-
level image segmentation.   

1 Introduction 

The mean shift method is popular for a wide variety of applications such as video 
tracking [9], image filtering [5], clustering [6] and image segmentation [4, 7].  In 
essence, it is a local (and thereby somewhat robust) form of mode seeking. It is local 
because it operates on a window and it also achieves a degree of scale selectivity since 
it works with a smoothed estimate of the underlying density function. In the most 
commonly used form [10, 7], the window size and the smoothing are directly related 
to a quantity h that is the “bandwidth” choice (for the kernel density estimator).  
    Although many authors have remarked that the value h needs to be chosen with 
care, the general impression given is that the results are not that sensitive to the choice 
of h and that one generally takes a pragmatic “hit and miss” affair. In this paper we 
illustrate that there are two issues affected by the setting of h: the rather disastrous 
appearance of false peaks (where the application of the mean shift process will fail) 
and the choice of scale (affecting the significance of actual peaks in the underlying 
density – at large scales the density is very smoothed and local peaks are disregarded 
or merged). The latter behavior is much more benign and, indeed, as it performs a type 
of controlled scale-space analysis, can be used to advantage.  
    This paper provides an important warning about the sensitivity of the mean shift to 
false peak noise due to quantization. In this paper, we choose, for simplicity, the 
problem of histogram based gray level image segmentation. We show that one can 
rather simply predict values of h that will be problematic; and thereby, in this setting, 
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we provide a means for a completely automated approach. This negates the need for 
the setting of a value for any parameter, including h. 

2 Density Gradient Estimation and Mean Shift 

There are several nonparametric methods available for probability density estimation 
[12]. Kernel estimation is one of the most popular techniques. Given a set of n data 
points {xi}i=1,…,n in a d-dimensional  Euclidian space Rd, the multivariate kernel 
density estimator with kernel K and window radius/band-width h is ([12], p.76): 

(1) 
 

K(x) should satisfy some conditions ([14], p.95). The Epanechnikov kernel ([12], 
p.76) is a kernel that yields minimum mean integrated square error (MISE): 

 

(2) 

 
where cd is the volume of the unit d-dimensional sphere, e.g., c1=2, c2=π, c3=4π/3. 

The estimate of the density gradient can be defined as the gradient of the kernel 
density estimate (1) 

 
(3) 

According to (3), the density gradient estimate of the Epanechnikov kernel can be 
written as: 

(4) 

where the region Sh(x) is a hypersphere of the radius h, having the volume 
d

d ch , 

centered at x, and containing nx data points. 
The mean shift vector Mh(x) is defined as:                        

 
(5) 

Equation (4) can be rewritten as: 

(6) 

 
Equation (6) firstly appeared in [10]. Equations (5) and (6) show that the mean shift 

vector is the difference between the local mean and the center of the window, and the 
mean shift is an unsupervised nonparametric estimator of density gradient. Applying 
the mean shift leads to the steepest ascent with a varying step size that is the 
magnitude of the gradient [3]. The converged centers correspond to modes (or centers 
of the regions of high concentration) of data. A proof of the convergence can be found 
in [6, 7]. The mean shift method has been widely exploited and applied in low level 
computer vision tasks [3, 4, 11, 13, 5, 7].  

During histogram analysis, valleys between modes need to be found to set 
thresholds [2]. In [8], the Gaussian kernel is employed in a method to detect saddle 
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points (i.e., valleys in our method). However, the saddle detection method needs a pre-
partitioned cluster and its complementary cluster set. In the next subsection, we will 
provide a simple method using the Epanechnikov kernel.  

2.1 Mean Shift Valley (MSV) Algorithm 

We note that the direction opposite to the mean shift vector will always points toward 
to a local minimum density, thus, we define the mean shift valley vector: 

 
(7) 

Replace )(M h x in (6) by )(MVh x , we can obtain: 

(8) 

 
In practice, the step-size given by the above analysis may lead to oscillation, 

particularly when finding valleys. To derive a recipe for avoiding the oscillations we 
use an adjustable step-size 10 ≤< p :  

(9)  
 
If the step at yk  is so that MVh(yk)

T MVh(yk+1)>0 then the oscillation is avoided. 
The mean shift valley algorithm can be described as:  
1. Choose the bandwidth, h; set p =1; and initialize the location of the window  
2. Compute the shift step vector MVh(yk). 

3. Compute 1+ky  by equation (9) and )(MV 1h +ky . 

4. If MVh(yk)
T MVh(yk+1)>0, go to step 5; Otherwise, we let p=p/2. Repeat step 3 and 

4 until MVh(yk)
T MVh(yk+1)>0;  

5. Translate the search window by )( kh yMVp ⋅ . 

6. Repeat step 3 to step 5 until convergence. 
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Figure 1. An example of the application of the mean shift valley method. 

 
To illustrate the mean shift valley method, three normal modes (mode 1 includes 600 
data points, mode 2 includes 500 data points, and mode 3 includes 600 data points) 
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with total 1700 data points were generated in Figure 1. We selected two initial points: 
V0 (0.3) and V1 (7.8). The search window radius was chosen as 2.0. The mean shift 
valley method automatically found the local minimum densities (converged points). 
Precisely, V0’ was located at 2.1831, and V1’ was at 5.8898. The centers (V0’ and 
V1’) of the converged windows correspond to the local minimum probability 
densities. If we use V0’ and V1’ as two density thresholds, the whole data can be 
decomposed into three modes. Table 1 gives the obtained parameters. 

Table 1. Applying the mean shift valley method to decompose data. 

There is one exceptional case: when there are no local valleys (e.g., uni-modal), the 
mean shift valley method is divergent. This can easily be avoided by terminating when 
no samples fall within the window. 

3 Gray-Level Image Histogram and Mean Shift 

If we are segmenting a gray-level image, the mean-shift equations can be rewritten as 
functions on the image intensity histogram: 

 
(10) 

 
where H(ti) be the histogram on gray level ti (ti is an integer and 2550 ≤≤ it ). 

The kernel density function in equation (10) is related to discrete gray levels 
)}(|{ xStt hii ∈  and the corresponding histogram{ }(x)St|)H(t hii ∈ .  

Likewise: 
 
 
 

 

(11) 

The last term in (11) is called the sample mean shift Mh(x) in discrete gray level space: 
 

(12) 

 
    Equation (12) is derived from the Epanechnikov kernel. (Note: reference [15] used 
a Gaussian kernel - see equation (15) and (17) in that paper). 

Mode 1 Mode 2 Mode 3  
 Mean Number Mean Number Mean Number 

Generated Data 0 600 4 500 8 600 
Estimated 
Parameters 

-0.0736 603 4.0419 488 7.9592 609 
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4 The False Peak Noise 

In implementing the mean shift approach in this setting, we found, to our surprise, in 
some cases there are a lot of peaks appearing between two consecutive gray levels 
near a local maximum density (see Figure 2(a) and (b)). We call these peaks the false 
peaks. These false peaks will seriously affect the performance of the mean shift 
method, i.e. the mean shift is very sensitive to these noise peaks and the mean shift 
loop will stop at these false peaks instead of a real local maximum density.  

Here we analytically determine the conditions leading to this problem. For 
simplicity, we choose a one-dimensional setting. Let )(ˆ

ktf be the kernel density 

estimate at gray level tk; let 10 << xδ ; d=1; and cd=2. Using equation (10) we have 
 

(13) 
 

 
If h is an integer (h>0) and tk+h<255, and considering ti has to be a series of 

consecutive unsigned integer, we have      .                       
The equation (13) can be rewritten as: 
 
 
 
 
 
 

(14) 
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(c) (d) (e) 
Figure 2. False peak noise. (a) Original probability density distribution with h equal to 
5; (b) Zoom in a part of (a). Many false peaks introduced by A1+A2 in Eq. (15);  (c)-
(e) A1, A2, and A1+A2 in Eq. (15) with tk=95. 
 
We let:                

(15a) 

 
When h>> xδ , A2 can be approximated as a linear equation (see Figure 2(d)). 

Equation (14) can be rewritten as:  
                  21)(ˆ)(ˆ AAtfxtf kk ++=+ δ                     (15b) 

Now we calculate the differential of )(ˆ xtf k δ+ : 

 
 
         

(16) 
 
Let (16) equal zero, we obtain: 

 

(17) 

 
Substituting equation (12) into equation (17), and if 10 << xδ , i.e. if: 
 

(18) 

 
there will be a false peak appearing between two consecutive gray level, tk and tk+1. 

In Figure 2, when we apply the mean shift with initial location at 95, we find it 
stopped at 95.7244, instead of the real local maximum density at 101. From (17), we 
obtained xδ =0.7244, i.e. there is a false peak between 95 and 96.  

We let L be the left item in the in equation (18) and R be the right item of (18); let 
xMS(tk) be the convergent point, obtained by the mean shift method with initial point at 
tk, corresponding to the local peak. Thus if the condition:L<h<R is satisfied, we can 
predict that there will be a false peak between tk and tk+1 (see Table 2).  

 

h L R xδ  tk xMS(tk) False peak between tk and tk+1 
5 -1.45 7.45 0.72 95 95.72 yes 
6 -2.84 6.99 0.89 95 95.89 yes 
7 -5.76 6.06 1.08 95 96.96 no 
7 -5.10 7.45 0.96 96 96.96 yes 
8 -9.68 3.95 1.30 95 97.94 no 
8 -7.99 6.19 1.13 96 97.94 no 
8 -7.42 8.96 0.94 97 97.94 yes 
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Table 2. False peaks prediction 

The above analysis suggests that one could devise an approach that adaptively adjusts 
h depending upon whether false peaks are predicted. If a false peak is detected, we can 
use the following adjustment to avoid the influence of the false peak: 

(19a) 

             (19b) 

5 An Unsupervised Algorithm for Image Segmentation 

Consider the peaks {P(i)} and valleys{V(i)}. V(0)=0 and V(n)=255. 
)()(....)1()1()0( nVnPVPV ≤<<<≤ . The algorithm is described as follows: 

(1) Initialise the bandwidth h and the location of search window. 
(2) Apply the MS method to obtain peak Pk with the initial window location Vk-1+1.  
(3) Apply the MSV method to obtain valley Vk with initial window location Pk+1. 
(4) Repeat step (2) and (3) until Pk or Vk is equal to or larger than 255. The questions  
remains as to how many of these peaks are significant. We post-process by step (5). 
(5) Validate peaks and valleys   
   (5a) Remove peaks too small compared with the largest. 

(5b) Remove the smaller of two consecutive peaks if too close. 
(5c) Calculate the normalized contrast [1] for a valley and two neighboring peaks: 
 

(20) 

where the contrast is the difference between the smaller peak and the valley. Remove 
the smaller one of the two peaks if this is small.  

After step 5(a)-5(c), we obtain several significant peaks {PS(1),…PS(k)}. The 
valleys then are chosen as the minimum of the valleys between two consecutive 
significant peaks. Thus we have k-1 valleys {VS(1),…VS(k-1)}. 
(6) Using the obtained valleys finally obtain k segmented images by {[0, VS(1)], 
[VS(1), VS(2)], … [VS(k), 255]}.  

6 Experimental Results 

    In this section, we will use several examples to show the performance of the 
proposed method in segmenting images. Figure 3 demonstrates the segmentation 
procedures of the proposed method. Figure 3 (c)/(d) shows the obtained peaks and 
valleys before/after validation . Before the validation, there are ten peaks and ten 
valleys obtained. Near a local plateau, there will be some insignificant peaks and 
valleys.  After applying step 5 in section 5, we finally obtained three validated valleys 
and thus we have four segmented images Figure 3 (e-h). The final result is shown in 
(i). Figure 4 hows another experiment on a x-ray medical image. From Figure 4, we 
can see that the x-ray image has been successfully segmented: the background (Figure 
4 (c)), the bone (Figure 4 (d)), and the tissues (Figure 4 (e)) were extracted separately. 

Height

Contrast=Contrast Normalized

k+1 k h ky = y + ceil(M (y )) for MS step

k+1 k h ky = y + floor(MV (y )) for MSV step
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(d) (e) (f) 

   
(g) (h) (i) 

Figure 3. The segmentation results of the proposed method (h=7). (a) original image 
of the cameraman; (b) gray-level histogram; (c) peaks and valleys of )(ˆ xf  before 
merging; (d) final peaks and valleys; (e)-(h) the resulting segmented images; (i) the 

final segmented image. 
 The computational speed of the proposed algorithm is efficient: about 0.27 second 
using MATLAB code on an AMD 800MHz personal computer.  
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(d) (e) (f) 

Figure 4. The application of the proposed method on medical images (h=2). (a) the original x-
ray image; (b) the final peaks and valleys after validation; (c)-(e) the resulting segmented 
images; (i) the final segmented image. 

 

7 Conclusion 

The mean shift (MS) method is well known and popular: yet its sensitivity to false 
local peaks is virtually unrecognized. In this paper, we analyze the influence of false 
peak noise on the MS and MSV method, in particular, we show how the occurrence of 
the false peaks is related to the bandwidth of the kernel density estimator. We then 
provide an algorithm to avoid the false peak problem in image segmentation. 
    As Comaniciu, etc. [8] pointed out, because the MS iterations (and the saddle 
point iterations) converge to a point with zero gradient, a test for local maximum (or 
local minimum) is needed by checking on either the eigenvalues of the Hessian matrix 
of second derivatives, or on the stability of the converged point through perturbing the 
converged point by a random vector of small norm. Due to its ability to predict false 
peaks, the false peak noise theory provides a third possible way to test the local 
maximum (peaks) and local minimum (valleys).  

 A novel unsupervised peak-valley sliding algorithm for image segmentation is also 
presented in this paper. We use the MS method to find peaks and the MSV method to 
find valleys. The peaks and valleys are alternatively found one by one. After validating 
the obtained peaks and valleys, we use the validated valleys as density thresholds to 
segment the image.  
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    Generally speaking, if h is large, the details will be smoothed and the image will 
be under-segmented; on the other hand, if h is chosen too small, there will be a lot of 
noise (including peak noise and valley noise) and the image will be over-segmented. 
However, the theory of false peak shows there are exceptional cases existing: false 
peaks appear only when equation (18) is satisfied.     
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