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Abstract In this paper, we present an interpretation of the Maximum
Likelihood Estimator (MLE) and the DELOGNE-KAsA Estimator (DKE)
for circle-parameter estimation via convolution. Under a certain model
for theoretical images, this convolution is an exact description of the
MLE. We use our convolution based MLE approach to find good starting
estimates for the parameters of a circle, that is, the centre and radius. It
is then possible to treat these estimates as preliminary estimates into the
NEWTON-RAPHSON method which further refines these circle estimates
and enables sub-pixel accuracy. We present closed form solutions to the
CRAMER-RAO Lower Bound of each estimator and discuss fitting circles
to noisy points along a full circle as well as along arcs. We compare our
method to the DKE which uses a least squares approach to solve for the
circle parameters.

1 Introduction

The estimation of the centre and radius of a circle given noisy circular data points
which lie on its circumference is a very well known problem. It often arises in
digital image processing when circular features in digital images are sought. The
reasons for this range from quality inspection for mechanical parts [1] to fitting
circles for particle trajectories [2].

One of the early applications of circle fitting was studied by ROBINSON [3] in
connection to fitting circles to a set of noisy coplanar points. His method is based
on a least squares approach. Circle fitting also has applications in archaeology [4],
microwave engineering [5] and ball detection in robotic vision systems [6].

An advantage of working with images rather than with data points directly
is that it is a lot more convenient. Often it is desirable to perform the circle
parameter estimation on images directly rather than somehow extracting the
x and y coordinates of each noisy circle point in the image and performing
Maximum Likelihood Estimation (MLE) or a least squares fit on the points
themselves. It would be very useful to express the MLE and the least squares
procedure in terms of convolution.

* Emanuel Zelniker is additionally supported by a scholarship from the Commonwealth
Scientific & Industrial Research Organisation.

509



Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

KERBYSON & ATHERTON [7] mention that the Hough transform can be im-
plemented by convolving a single circle with an edge magnitude image. They
build on this idea by defining an orientation annulus which detects a range
of radii of circles, but also uses edge orientation information by taking the dot-
product between the edge orientation and an orientation field within the annulus.
A phase coded annulus is also described which detects a range of radii of circles
by using phase to code for radius. Combining this with the orientation annulus
operator results in a circle detection operation which uses both edge orientation
information and size information. The operator is applied by using convolution.

In this paper, we present an interpretation of the MLE and the Delogne-Kasa
Estimator (DKE) which uses linear least squares [8] via convolution. In an ideal
image, which we define as an unbounded image with continuous-values in inten-
sity and in spatial coordinates, we show that the minimum of the convolution
gives the precise MLE for circle centre. In a digital image, the convolution gives
a necessarily coarser estimate. However, this can be used as a starting point for
the NEWTON-RAPHSON method in order to obtain sub-pixel accuracy.

We give a brief outline of CHAN’s circular functional model in (§2) and in (§3),
we give a brief outline of the MLE. We then show the connection between the
classical formulation of the MLE and DKE and the new interpretation in terms
of convolution (§4). We present closed form solutions to the CRAMER-RAO Lower
Bound of each estimator and discuss fitting circles to noisy points along a full
circle as well as along arcs in (§5). We compare our method to the DKE circle
fitting procedure in (§6).

2 Chan’s Circular Functional Model

In this Section, we briefly present CHAN’s circular functional model [9]. In this
model, we assume that the positions of N points on the circumference of a circle
are measured. The measurement process introduces random errors so that the
Cartesian coordinates (z;,¥;), i = 1,..., N can be expressed as

x; =a-+rcosb; + &, yi:b+7’sin9i+m.

Here, (a,b) is the centre of the circle, r is its radius, the 6; are the angles
around the circumference on which the points lie and the &; and n; are instances
of random variables representing the measurement error. They are assumed to
be zero-mean and i.i.d. In addition, we will specify that they are Gaussian with

variance o2.

Figure 1 shows some data with N points (or candidates) for the circumference
of a circle and an arc, p1,...,pn, displaced from the circumference by noise. We
explicitly exclude the possibility that r =0or 6; =03 = ... =0y.

510



Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

Circle radi

Circle centre ¥ Circle centre

(a) Circle (b) Arc

Figure 1. Noisy measurements of points on the circumference of a circle and an arc.

3 Maximum Likelihood Estimation (MLE)

The conditional probability density function for pq,...,pyx in polar coordinates
is as follows

1
P(pl,...,pN | a,b,r,&l,...,GN) = W
ﬂe B [2; — (a+rcos9i)]2+ lys — (b+rsin91)]2 1)
A XP 957 .
=1
By definition, maximum likelihood estimates are given by those a, l;, 7, él, . ,é N

that minimise (1).

We can consider the logarithm of (1) and obtain an objective function which
is related to the log-likelihood by a scaling factor and constant offset, both of
which depend only on ¢ and N. The objective function of the log-likelihood is
the following sum which is a function of polynomials in a and b

N
fovj(a,byr, 01, ... 0N | p1,...,DN) = — Z [:rr(a+rcost9¢)}2+[yr(b+rsin9¢)]2.
i—1

(2)

Differentiating (2) with respect to 6; and equating to zero, we find that the

sum is minimised when
i —b
0; = arctan (yl > . (3)
Xr; —a

Substituting (3) into (2) and partially differentiating with respect to r shows
that the radius estimate is the average of the distances from each noisy point to
the centre, or

1 N
Py Ll cla (4)
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Hence, using (4), it is possible to express (2) as follows

anz c||2]. (5)

fObj(aab‘plw'pr Z”pl C||2+_

4 MLE via Convolution

4.1 Ideal Images

We define an ideal image of our noisy circular points as one which is unbounded
and which is continuous-valued in intensity and in spatial coordinates. Under
these conditions, we can assume that the points are represented by 2-dimensional
delta functions, that is, we can consider the image as a function f(x,y), where

N
225($—$i7y_yi)' (6)

If we define a 2-dimensional kernel function (represented graphically in Fig-
ure 2(a)) as g(z,y) = /22 + y? then f(z,y)* ¢°(z,y) = N and

N

f(z,y) = g(z,y) Zg —ziy— i) = > [Ipi — cll2, (7)
i=1

N

f(x,y) Zg (@—ziy—vi) = »_ lIpi — cll3. (®)
=1

It then follows that

(f(a,b) * g(a,b))*
f(a,b)* g°(a,b)

That is, (9) is an exact interpretation of equation (5). The MLE is therefore
shown to be equivalent to minimising the intensity of an ideal image obtained
through convolution. It is known that the MLE is the best estimator for circle
parameters in a certain range of signal to noise ratio.

fobj(a7b|p1,...,pN):f(a,b)*gQ(a,b)— (9)

4.2 Real Images

For real digital images, the assumptions in Section 4.1 do not hold. Digital images
have a finite resolution and can only be of a certain size. As a result, our model
is not entirely accurate, but it can still be applied to real images. If we have
a digital image f[x,y] and a conic kernel g[x,y] (where the square brackets [
denote the discretised version of the image in (6) and the kernels in Figure 2)
then we can still implement the following equation

(fla,b] * g[a, b])?

fobj(a,b|p17"'apN) = f[a’b} *QQ[G’b] B m

(10)
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Figure 2. Convolution kernels in MLE and LLS.

Equation (10) on its own is suitable to provide a coarse estimate of the circle-
centre. However, if sub-pixel accuracy is required in the parameter estimates, we
propose that equation (10) can be used as a mechanism by which to start the
NEWTON-RAPHSON method. Equation (10) will return a 2-dimensional intensity
image, the minimum of which will be the coarse centre estimate. This can then
be treated as a starting point for the NEWTON-RAPHSON method. On its own,
the NEWTON-RAPHSON method is very well known to get stuck in local minima
because the starting point is chosen incorrectly (usually it will be chosen in an
ad-hoc manner by the user) or it can diverge to +oo or even oscillate between
two points without converging at all. By implementing (10) first, we can be more
confident that the NEWTON-RAPHSON method will reach the global minimum.
We can then use equation (4) to obtain the radius estimate, 7.

The advantages of running our algorithm on real digital images are that
in many situations, the size of the circle one is trying to detect is known and
therefore, the user can impose a constraint on the maximum size (radius) of the
circle. Moreover, circles of any size up to the maximum radius constraint can be
detected in images provided they do not overlap.

4.3 DKE via Convolution

It is also possible to express the DKE [8] as a convolution equation under the
assumptions in Section 4.1. The paper in [8] shows that the DKE is a biased
estimator however, as ¢ — 0, the DKE is shown to be unbiased and statisti-
cally efficient. This estimator was used by KAsA [5] and originally proposed by
DELOGNE [10] and can be written as follows

N
(apK,bpk,TpK) = arg (mbin) [(zi — a)® + (i — b)* — r?]%. (11)
SR ]
A partial derivative shows that the sum is minimised when

1 N
Fhx = NZ(%—G)2+(% —b)%. (12)
=1
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Substituting (12) into (11) and simplifying results in the following expression

(f(z,y) * h(z,y))*
f(@,y) «hO(z,y)

where h(x,y) = g*(x,y). This can be interpreted as a 2-dimensional intensity
image, the minimum of which is the centre estimate.

In order to implement (13) on a digital image, we would need to replace
f(z,y) and h(x,y) with f[a,b] and h[a, b] respectively.

(apr,bpr) = f(@,y) = h(2,y) — (13)

5 Cramér-Rao Lower Bound (CRLB)

In order to statistically analyse the convolution based MLE, we make use of
the the CRAMER-RAO Lower Bound (CRLB). This provides a theoretical lower
bound for the variance of each estimator for a certain amount of noise, o, present
in the circular data points.

From VAN TREES [11], it can be shown that by calculating the FISHER IN-
FORMATION MATRIX, J, the entries along the main diagonal of J~! will corre-

spond to the lower bound of the variance of each estimator, 02, o? 0‘%, o2 2

2 ., 0
b’ 01 ’ ’ 01\[
Since we are only interested in the CRLB of a, b and 7, it is of interest to obtain
the upper 3 x 3 sub-matrix of J=!. If we denote J;; as the upper 3 x 3 sub-matrix
of J, then Jqio, Jo; and Joo are 3 x N, N x 3 and N x N respectively and are

the remaining sub-matrices of J. CHAN & THOMAS [12] showed that

N cos?f; cosb;sinb; cosb;
1 1 . ) .
Ji = JidyJor = — E cosf;sinf; sin“6; sinb; |, (14)
02 ¢ .
i=1 cosb; sin 6; 1

but see also [13] for a more straight forward derivation. If we assume that the 6;
are equally spaced around the circle and define 6; as follows

i ¢

— 4+ ——-= =1,...
NTav T T
where ¢ can be anything from 0 to 27 radians, we can investigate the CRLB
of our estimates for full circles as well as arcs. The closed form solutions to the
entries in (14) will be

97;4_1 = N — 17 (15)

N sin ¢ 0 sin%
1 2 2 sin % sin %
1 . N  sing
Ji1 —J12d5 Jor = P 0 2 2sin & 0 ) (16)
sin % 0 N
sin 52
N

and therefore

(Jll — J12J2721J21)71 = 0'2 0 N

514



Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

where f(¢, N) is a function in terms of ¢ and N and

o 2sin® % sin ¢ _ sin ¢ 0 2sin? % sin % (18)
= 2 T a9 T = . . :
N sin % sin % Sin 7 sin? % (N sin % + sin qS)

The lower bounds of the variance of @, b and 7 lie along the main diagonal of (17).
Having a closer look at equation (17), it can be seen that if ¢ is equal to
2 radians, than the CRLB for &, b and 7 vary linearly with o. However, if ¢
describes an arc than there will be what we refer to as correction factors in the
denominator along the main diagonal, ¥, = and {2 respectively. If we plot ¥,
= and {2 from 0 to 360°, we obtain the plots in Figure 3. From these plots, it
can be seen that when ¢ is less than 27 radians, the CRLB for each estimator
increases. This also makes sense intuitively because as the arc length decreases,
it becomes more difficult to fit a circle to the noisy data points along the arc.

0 m€

Correction factors

_1000 100 200 300 400

¢ (0 to 360°)

Figure 3. A plot of the correction factors as a function of ¢ for N = 360 points. If N
changes, the y-axis of the plot will be scaled accordingly.

_ Avery interesting observation can be made about the CRLB of the estimator
b. When ¢ is between 7 and 27 radians, the CRLB for Ug can actually be lower

than 202 /N which is the CRLB for b when ¢ equals 27 radians, something that
is not so intuitive. This behaviour can be explained by looking at concentration
ellipses. From VAN TREES [11], concentration ellipses are regions inside which
the probability, P of the error vector is a certain amount, say, the 99% confidence
ellipse. It is possible to plot these concentration ellipses for different values of
¢ in the case of the 99% confidence level, i.e. P = 0.99. The major and minor
axes will be the CRLB for @ and b respectively. Setting N to 360, o to 5 and
ranging ¢ from /4 to 27 radians, the ellipses are plotted in Figure 4. It can be
clearly seen that for the ellipses corresponding to ¢ between 7 and 27 radians,
the CRLB of b is less than the CRLB of b when ¢ = 27 radians . This explains
the behaviour of the plot for = in Figure 3 for ¢ between 7 to 27 radians.
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(a) (b) Enlargement of 4(a).

Figure 4. 99% confidence ellipses for various values of arc length ¢. The bold and solid
lined ellipse and circle correspond to the confidence ellipses for an arc length of = and
27 radians respectively.

6 Simulations and Results

This section will present a MONTE-CARLO analysis to compare the DKE circle
fitting procedure [8] to our method as as a starting point for the NEWTON-
RAPHSON method.

For the DKE, in each trial, 200 points (N = 200) were generated in equal
increments around a full circle as well as an arc length, ¢ of m/4 radians. The
radius r was set to 50. Then, noise was added to each (z;,y;) coordinate pair in
the form of (&;,n;). The amount of noise, o was varied from 1072 to 1 in equal
geometric increments. Quantisation noise was added on top of this so that we
could compare the DKE to the MLE in a fair way. Then, the DKE was run
repeatedly, 750 times, for each value of o to obtain estimates for the centre of
the circle (a, IS) and 7 and use them to generate mean square error values. These
values were then plotted against their corresponding theoretical CRLB for the
same level of noise . The plots can be seen in Figure 5 on a logarithmic scale
(crosses). The plot for b follows a similar pattern to that for & and is omitted
for this reason.

In addition to this and on the same plots, for each value of ¢ and o, MONTE-
CARLO simulations were performed for our convolution equation (10) as a start-
ing point to the NEWTON-RAPHSON method. Again, N was set to 200 points
and noise was added in the same way. Because this method involved convolution
with discrete images, each point needed to be rounded off to the nearest grid
position in the digital image, which was chosen to be 121 x 121 in size. In other
words, in addition to the white Gaussian noise added to each point, quantisation
noise was also added. If, after the addition of quantisation noise, certain points
became stacked on top of each other, the intensity value at the corresponding
grid position in the image was incremented by the necessary amount. Our al-
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gorithm was run repeatedly, 750 times for each value of o, to obtain estimates
for (d,ZA)) and 7. Mean square error values were generated and the results are
plotted in Figure 5 (in diamonds) against the corresponding theoretical CRLB
for the same level of noise o. Again, the plot for b follows a similar pattern to
that for @ and is therefore omitted. When an image was convolved with a certain
kernel, the multiplication of their respective spectrums was performed, followed
by an inverse FFT. FFT algorithms for images with N rows are known to be
N2%logy(N) in complexity.

The effect of quantisation noise is that at a certain value for o, the simu-
lation results level off and stop adhering to the CRLB. It can be seen that as
¢ decreases and the amount of noise ¢ increases, the MLE NEWTON-RAPHSON
method adheres to the theoretical CRLB more closely than the DKE method.
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Figure 5. MONTE-CARLO simulation results.
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7 Conclusion

We have presented a new interpretation of the MLE and DKE for circle param-
eter estimation which uses a convolution based approach to solve for the centre
estimate. For the MLE, the output provides a coarse estimate, but in order to
obtain sub-pixel accuracy, it is possible to refine the coarse estimate through the
NEWTON-RAPHSON method to achieve sub-pixel accuracy. A comparison of the
MLE NEWTON-RAPHSON method to the DKE least squares method shows that
the MLE performs better as the arc length gets smaller and as the noise level gets
larger. We would like to point out that our motivation in writing this paper was
to investigate accurate and optimal circle fitting methods and not ones which
are fast. We would also like to point out that our algorithm is not designed for
overlapping circles in images or for ‘natural’ scenes which contain edge points of
non-circular objects. The problem of grouping circular edge detected points in
images and ignoring edge points which are not part of the circle is still an open
problem and is yet to be fully investigated. This is something that the authors
intend to pursue.
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