
Adapting Interest Point Detection to
Illumination Conditions

Flore Faille

Institute for Real-Time Computer Systems
Technische Universität München, D-80333 Munich, Germany

Flore.Faille@rcs.ei.tum.de

Abstract. The objective of the presented work is to improve the sta-
bility of interest point detection under illumination changes. The use
of a global threshold is shown to be insufficient and three methods are
proposed to enhance a state–of–the–art algorithm: the Harris corner de-
tector. These methods are based on different principles: a local image
normalization as preprocessing, a local threshold adaption, and a lo-
cal automated threshold selection based on clustering. All methods are
compared on several image series created by varying the lighting condi-
tions. For performance evaluation repeatability and false positive rates
are used. All methods allow a stability enhancement under complex illu-
mination changes. The algorithm based on threshold adaption performs
best.

1 Introduction

Many computer vision tasks are based on the detection of interest points in im-
ages. This includes 3D reconstruction [1–3], tracking [4], content–based image
retrieval [3, 5], object recognition [3, 6, 7] and mobile robot localization [8, 9]. Us-
ing such local features can improve the robustness of algorithms, e.g. to partial
occlusions [7, 5]. Furthermore interest point detection is used to reduce the data
flow and consequently the computational costs, as all consecutive processing
steps such as characterizing the points’ neighborhood and matching them are
solely applied to the interest points. Therefore the detection should be reliable
and should ideally deliver the same points under all possible imaging conditions.
Higher level tasks may be able to compensate a partial feature loss using statis-
tical or robust methods (e.g. RANSAC), however the number of misdetections
influences the efficiency and accuracy of such algorithms [2]. As a consequence,
it is worth spending some effort to improve the detector stability under changing
imaging conditions. The repeatability [10] is often used to measure this stability.

In this paper the focus is put on varying lighting conditions, which is still
one weak point of interest point detection. Changes of the intensity, of the wave-
length composition and above all of the position and orientation of the light
source(s) can induce strong variations in the appearance of a scene. In most en-
vironments, lighting conditions cannot be controlled. This problem must be over-
come – among others – during interest point detection. Non–uniformly lighted
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scenes reveal well the difficulty: state–of–the–art detectors tend to extract inter-
est points exclusively in the most illuminated areas, so any change of the light
source position may result in poor repeatability as can be seen in Fig. 1.

Different methods are presented in this work to improve a state–of–the–
art and popular interest point detector: the Harris corner detector [11]. These
methods perform an adaption of the detection to the local lighting conditions and
are compared on several test series that involve different types of illumination
changes.

The next section explains why the Harris corner detector was chosen and
introduces how it works. Section 3 presents the influence of illumination changes
on the detection and some solutions used in other image analysis areas. The
different methods proposed to improve the interest point detector are given in
section 4. Finally experiments and results are described in section 5.

2 Interest Point Detector

As pointed out in the introduction, interest point detectors have important ap-
plications and have consequently received a lot of attention. There exist many
ways to define interest points. Thus, many detectors have been designed based for
example on local grey value extrema [3, 6], on curvature maxima along contours
[12, 10] or on the local grey value distribution [13]. The Harris corner detec-
tor [11] selects points for which the autocorrelation function significantly drops
in two perpendicular directions. That way the interest points can be optimally
retrieved after a limited camera motion e.g. in tracking applications [4]. Com-
parisons between several algorithms [10, 2] have shown that the Harris corner
detector reaches the best repeatability rate for moderate changes of the imaging
conditions. Recently scale and affine invariant detection of interest points gained
importance [6, 3, 12]. The Harris corner detector can be extended to being invari-
ant to such transformations as shown in [14]. Furthermore, it was proved that
the interest points extracted with the Harris detector possess high information
content [10] and high saliency [15]. These facts are confirmed by means of the
different applications in which it was successfully used, e.g. in [1, 2, 4, 5, 7, 9].

For these reasons, the Harris corner detector was chosen in this work for
interest point extraction. The implementation proposed by Schmid et al. [10] is
used. The detection of interest points is based on the following matrix C that
represents the local statistics of the first order derivatives around a pixel (x, y):

C = G(σ) ⊗
[

I2
x Ix Iy

Ix Iy I2
y

]
, (1)

where G(σ) is a Gaussian with standard deviation σ and ⊗ is the convolution
operator. The first derivatives Ix and Iy are estimated by convolving the grey
value image I(x, y) with the derivatives of a Gaussian to reduce noise and aliasing
effects [10] (here σderiv = 1.2 is used). Interest points are pixels for which C has
two big eigenvalues. The “cornerness” function R allows a direct detection:

R = det(C) − α trace2(C) with 0.04 ≤ α ≤ 0.06 [11]. (2)
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In this work, α = 0.06 and σ = 3.0 are used. Interest points are found at local
maxima of R above a given threshold T (T > 0). Some authors [2, 4] favor the
use of the eigenvalues for detection. We observed that the use of the cornerness
function R not only allows faster calculation but as well lower sensitivity to noise
and aliasing problems.

3 Influence of Illumination Variations on the Detection

Illumination changes represent a problem for the interest point detection as
shown in Fig. 1: only 46% of the points are re–detected after the lamps have been
turned on. Despite the many algorithms available to overcome these changes for
color images (see e.g. [16]), the attempts to consider lighting conditions during
interest point detection from grey value images stayed modest so far. Most of
the time, a fixed threshold is used [4, 7, 9, 13, 12]. In [10] the threshold is set to
1% of the maximum of R to adapt to the global intensity. It is shown to yield
a reasonable stability for planar scenes and moderate lighting changes. Other
authors select the N points with the highest cornerness values [3, 2] or the top
ε% of the points [1]. In [1] the image is furthermore divided into 4 parts before
setting thresholds to achieve a more uniform interest point distribution.

Fig. 1. In the left image the scene is illuminated by sunlight, whereas in the right image
the light comes from neon lamps. The detected interest points are indicated by circles
of radius 3σ. Here T = 0.01 · max(R) is used as proposed in [10]. Only 46.0% of the
interest points of the left image are re–detected in the right image.

To understand why the use of a global threshold is not sufficient for a stable
detection, the image formation model for lambertian surfaces and a distant point
light source [3, 16, 17] can be considered:

I = e · n
∫

S(λ)E(λ)F (λ)dλ, (3)

where I is the pixel intensity, λ the wavelength, e the orientation of the incident
light, n the normal of the viewed surface, S(λ) the surface reflectance, E(λ) the
illumination spectrum and F (λ) the camera response function.
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According to (3), a variation of the light intensity (E(λ) → aE(λ)) results
in a multiplicative factor common to all pixels. But if the illumination spectrum
changes (E(λ) → E′(λ)) or if the light source moves (e → e′), the intensity
variations depend on the viewed color and on the underlying 3D structure. Con-
sequently, the transformation between two images I1 and I2 of a scene under
two different illuminations is often approximated by a linear equation which
paramaters may vary from pixel to pixel [3, 17]:

I2(x, y) ≈ a(x, y)I1(x, y) + b(x, y). (4)

The parameters a(x, y) and b(x, y) are often assumed to remain constant over
small image regions [3, 17]. Using this assumption and the definition of the Harris
detector, the effect on the cornerness function can be approximated as follows:

R2(x, y) ≈ a4(x, y)R1(x, y), where a(x, y) varies slowly in space. (5)

This formula is not accurate for local neighborhoods containing 3 or more col-
ors, or situated near depth or surface normal discontinuities. Shadow and light
patterns, reflections and specularities cannot be accounted for either.

However, it shows that a detection with a global threshold can only cope
with a change of the light intensity (where a(x, y) = a). To achieve a better
stability, an image normalization based on the locally estimated contrast1, mean
or standard deviation can be applied as preprocessing before the detection. This
method is used to gain robust local characteristics in [7, 17]. In [18] normalization
and characteristics extraction are achieved simultaneously by means of a nor-
malized convolution. Several thresholds can as well be used like in [1]: the local
illumination dependent adaption is performed on the threshold. An overview and
a comparison of locally adaptive thresholding methods are given e.g. in [19] for
document image analysis. Algorithms which are general enough to be adapted
to our case and require low computation times are based on two approaches:
either the threshold is adapted based on local measures like e.g. mean and stan-
dard deviation, or a clustering method like the k–means or Otsu’s [19] is locally
applied to compute the threshold based on the local distribution.

To summarize, three different principles can be followed for a better detection
stability under lighting variations. A method is proposed for each principle in
the next section: in 4.1 a local image normalization, in 4.2 a local threshold
adaption, and in 4.3 a local automated threshold selection based on clustering.
Detection examples and a comparison are given in section 5.

4 Adaption of the Detection to Local Lighting Conditions

4.1 Local Image Normalization

The first principle for an illumination dependent adaption consists of a local
image normalization followed by a detection with a global threshold. To minimize
1 difference of the maximal and minimal grey values
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the effects of normalization artifacts, the normalized convolution proposed in
[18] was chosen. The author compared three normalizations based on contrast,
variance and energy. We have chosen the energy normalized convolution:

output(x, y) =

∑
(i,j)∈W I(x + i, y + j)kernel(i, j)√∑

(i,j)∈W I(x + i, y + j)2
√∑

(i,j)∈W kernel(i, j)2
, (6)

as it shows the best behavior in the presence of noise [18].
For interest point detection, the matrix C is calculated as in (1) with deriva-

tives Ix and Iy obtained by means of normalized convolution. As the two deriva-
tion kernels have the same weighting factors, the division by the kernel energy in
(6) is here superfluous and can be suppressed. The window for energy summation
should have the same size as the derivation kernels (here 7 ≈ 6σderiv). The Harris
detector then remains unchanged: the function R is computed according to (2)
and its local maxima above T (T > 0) are detected. T is a user–defined threshold
and should be set to obtain a proper number of interest points. This method
will be called Normalized Harris Corner Detector (N–HCD) in the following.

4.2 Local Threshold Adaption

The second method to improve the Harris detector is based on a locally adaptive
threshold. From [19] two ideas were retained: (a) homogeneous areas are filtered
out to avoid noise–induced false detections, and (b) the threshold is adapted
using a local measure reflecting the lighting parameter a(x, y).

The main noise source in modern cameras is photon noise. As a result, R is
affected by a signal dependent, approximately multiplicative noise. Even with
a locally adaptive threshold, local maxima created by texture in dark areas
cannot be distinguished from the ones caused by noise in bright homogeneous
regions. To transform this multiplicative noise to additive noise, the processing
will be done on the logarithm of R. Hence, the variance of the noise on ln(|R|)
is independent of the image grey values. This can be verified on image series
taken with a constant setup, where noise is the only source for pixel variations.
A test on the local standard deviation can then be used to filter noise–induced
local maxima (step a). As the local mean µ(x, y) reflects the lighting parameter
a(x, y) and is needed for standard deviation estimation, it is used for threshold
adaption (step b). The following scheme for interest point detection is proposed:

1. Calculate R(x, y) and ln(|R(x, y)|) as indicated in (1) and (2).
2. Compute the local mean µ(x, y) and standard deviation σ(x, y) of ln(|R(x, y)|)
3. (x, y) is an interest point

– if it is a local maxima of R with R(x, y) > 0,
– if σ(x, y) > T1, (step a: filtering of noise–induced maxima)
– if ln(R(x, y)) > µ(x, y) + T2. (step b: locally adaptive thresholding)

This algorithm will be referred to as the Adaptive Threshold Harris Corner
Detector (AT–HCD). It is equivalent to a local normalization of R with an
additional filtering of noise–induced false detections.
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Fig. 2. Histogram of the
noise standard deviation.

The threshold T1 should be adjusted to the noise
level on R. It only depends on the camera and on the
parameters in (1) and (2). To set T1 the histogram
of the standard deviation of ln(|R|) on an image se-
ries taken with a constant setup can be used, as it
represents merely noise effects. As shown in Fig. 2,
the histogram contains two peaks: the first one cor-
responds to textured regions, the second one to ho-
mogeneous ones. Higher values occur in areas with a
small gradient (e.g. areas where shadows slowly dis-

appear) in which noise effects are amplified. Here T1 is set to 1.4. The size W of
the window used to compute µ(x, y) and σ(x, y) should be chosen such that the
local spatial standard deviation σ(x, y) in homogeneous areas matches the noise
standard deviation (σ(x, y) is much higher in textured areas). This makes sure
that the filtering of homogeneous regions (step a) works properly. For this, sev-
eral window sizes were tested and the smallest one delivering values consistent
with the second peak in Fig. 2 was selected (here W = 21 × 21). W depends
only on σ of the Gaussian in (1). The threshold T2 must be positive and as for
the N–HCD should be set by the user to get a proper number of interest points.

4.3 Local Threshold Selection Based on Clustering

The last proposed method involves a clustering algorithm applied on local neigh-
borhoods of the function R [19]. Most methods assume classes with Gaussian
distributions. To achieve a better fulfillment of this condition, the logarithm
of |R| is used. The k–means algorithm was chosen for clustering as it delivers
here the same results as Otsu’s method (both methods optimize the a posteriori
between–class variance) and is faster (no exhaustive search is performed).

L

S

Fig. 3. Discretization for
the local thresholding.

To save execution time, the discretization shown
in Fig. 3 is adopted: pixels in the large window L
are considered for clustering, but the threshold is
only applied to the small neighborhood S [19]. The
k–means algorithm is initialized with the mean of
ln(|R|) over all pixels. Although this represents the
global lighting conditions, it allows a consistent con-
vergence. The pixels inside L are clustered into two
classes with the two means µlow and µhigh. If a cluster
contains no pixel, or if µhigh − µlow < T1, no signif-
icant local maximum is detected in S. Otherwise all
local maxima in S such that ln(|Rx,y|) > µhigh + T2

are detected. This method will be referred to as the
Local K–Means Harris Corner Detector (LKM–HCD).

The employed window sizes depend on the Gaussian used to calculate R. For
L the results of section 4.2 can be used: the repeatability drops when the size
of L is smaller than W . In this paper, windows of sizes 25 × 25 and 5 × 5 are
used. The parameter T1 represents some kind of required signal–to–noise ratio.
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T2 allows to control the density of detected interest points in textured areas. The
influence of both parameters on the repeatability is relatively limited, so that
one threshold can be fixed (here T1 = 2.5) and the other can be used to detect
an appropriate number of interest points (here T2). If the application requires
the maximum number of interest points, T1 and T2 can be set to 0.

5 Experimental Results

To illustrate the detection results, all three methods were applied to the left
image of Fig. 1. Their variable threshold was chosen to obtain the same number
of interest points as with the global threshold used for Fig. 1.2 As expected, the
points detected with the proposed algorithms are not only located in the most
illuminated areas (cf. Fig. 4). Furthermore, the AT–HCD and LKM–HCD allow
a relatively even distribution of interest points in the image, whereas the N–
HCD tends to detect a few bunches of points. In their current implementation,
the N–HCD, AT–HCD and LKM–HCD require respectively about 1.11, 1.30 and
2.08 times as much execution time as a detection with a given threshold.

Fig. 4. Detection example for all algorithms. Upper left: global threshold, T = 0.01 ·
max(R). Upper right: local image normalization (N–HCD). Lower left: local threshold
adaption (AT–HCD). Lower right: local k–means algorithm (LKM–HCD).

2 63 interest points are detected. We obtain the following parameters: T = 0.34 for
the N–HCD, T2 = 2.67 for the AT–HCD, T2 = 1.82 for the LKM–HCD.
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To evaluate their stability, the detectors were compared on image series
involving different perturbations. The same parameters were used as for the
previous experiment. For comparison the results for a Global Threshold T =
0.01 · max(R) (GT–HCD) and for the selection of the Best N (here 63) Points
(BNP–HCD) are given. The performances are measured with the repeatability
rate [10], which is here the number of re–detections divided by the number of
points in the reference image. A point is considered re–detected if it is within
the 8–neighborhood of a reference point. Additionally, the false positive rate is
estimated as the number of non–redetected points divided by the number of
points in the current image. The consideration of both rates is necessary as the
number of detections is not constant. For all series, the reference image is the
image in the middle. The results are given in Fig. 5. The table presents the
stability for small perturbations due to camera noise (image series taken with a
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Fig. 5. The table (upper left) gives the mean repeatability and false positive rates
under small perturbations. The graphs show the repeatability and false positive rates
for image series created by varying the shutter time (upper right) or by changing the
type, number, position and orientation of light sources (lower left and right).
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constant setup), to global color changes (obtained by varying the white balance
parameters of the camera) and to neon lamp flickering. The first graph shows the
results for a global intensity change (the shutter time was changed). For the two
other graphs, the type, number, position and orientation of the light source(s)
were varied (see the graph annotations for more details). In the second graph
(scene 2), the results obtained by the GT–HCD have been omitted for better
visibility.

All detectors provide good stability for small perturbations. However the N–
HCD is more sensitive to noise than all others, as shown in the table and by
the many false positives for dark images in the varying shutter time graph. The
GT–HCD obtains the worst results: Even global lighting changes may result in
many false positives or low repeatability. Consequently, if a global threshold is
favored e.g. for efficiency reasons, the best choice is the BNP–HCD as it reaches
on the whole a reasonable stability. It provides a constant number of detections,
which also can be a drawback depending on image content. The three proposed
methods perform similarly to GT–HCD and BNP–HCD for small perturbations
or global lighting variations and are more stable under general lighting changes
(cf. lower graphs in Fig. 5). The AT–HCD and the LKM–HCD achieve the best
results. Their main advantage is an even distribution of interest points in the
image, as illustrated by the general illumination change graphs. In the first series
(scene 1), the few textured areas in which the N–HCD detected most points were
not much affected, so that this one could reach a very good repeatability. In the
second graph (scene 2), the N–HCD’s results are very poor due to specularities.
The AT–HCD and LKM–HCD reach moderate to good stability on both series.
Both have the additional advantage that the number of detections varies less with
the image content than for N–HCD and GT–HCD. The AT–HCD has slightly
better results and requires less computation time.

6 Summary and Outlook

This paper represents a first step to reach a higher stability of interest point de-
tection under varying illumination. The current algorithms use a global thresh-
old, which was shown to be insufficient. Three methods based on different prin-
ciples are proposed to adapt the Harris corner detector to the local lighting
conditions. The N–HCD relies on the calculation of locally normalized image
derivatives. The AT–HCD performs a local threshold adaption and addition-
ally filters noise–induced false detections. The LKM–HCD consists of a local
k–means algorithm to select the threshold automatically. These methods were
compared on image series involving different lighting variations. They enable a
better stability under complex illumination changes than detectors using a global
threshold. The AT–HCD performs best and furthermore allows a relatively even
distribution of interest points in the image. Specular highlights, saturation and
light or shadow patterns still represent a problem and decrease the detector sta-
bility, as they are not accounted for. This will be subject of further research,
e.g. by considering color information. The use of CMOS cameras could also help
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to reduce the saturation effects. The N–HCD can be enhanced by filtering noise–
induced false detections as in the AT–HCD and by constraining a more uniform
distribution of the interest points. Future work should as well consider testing
under simultaneous illumination changes and camera motion.
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