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Abstract. Partially supervised segmentation, that is, segmentation with
always incomplete training data has many practical applications in image
analysis and retrieval. This paper proposes a new algorithm for finding
regions of a single texture in an arbitrary colour image. The texture
is specified by a given training sample. The algorithm exploits colour
space vector quantization, colour thresholding, and similarity between
characteristic grey level cooccurrence histograms over a moving window
around each pixel and over the whole training sample. Experiments show
this algorithm effectively finds various homogeneous textures in complex
backgrounds.

1 Introduction

Image segmentation has many practical applications for identifying regions of
interest in remote sensing of the Earth’s surface, medical diagnostics, and indus-
trial vision. Many of the known models of unsupervised and supervised texture
segmentation belong to two basic groups: statistical models assuming that sim-
ilarity of textures is represented in terms of sufficient signal statistics collected
over the whole regions (e.g. [4, 10, 13]) and feature-based schemes where similar
textures are described by similar local feature vectors (e.g. [11, 12, 17, 22, 23]).
Several known algorithms of colour image segmentation (e.g. [2, 6, 16]) exploit
only the pixel-wise colour information. Today, the combined colour and texture
segmentation (e.g. [1, 5, 8, 15]) is of more interest. Moreover, in many practical
cases, only the regions with specific known textures have to be found.

The problem of separating a single known texture from an arbitrary back-
ground is of considerable practical value. For example, a typical application is
the content-based image retrieval (see, e.g., comprehensive surveys in [3, 19, 20])
in a large database given a small patch of example. Such a partially supervised
segmentation cannot be performed using the existing supervised or unsupervised
methods that pursue the goal of finding all the regions of different spatially ho-
mogeneous textures in each image. The supervised techniques assume that all
the training samples of such textures are available, while the unsupervised meth-
ods rely on no training data at all. But in the both cases the images have to be
split onto the set of homogeneous textured regions, and only a few of these latter
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are of practical interest. This paper investigates a new algorithm that separates
the regions similar to a known homogeneous colour texture (the training sample)
from an arbitrary and mostly inhomogeneous background.

2 Segmentation Algorithm: Basic Steps

The proposed algorithm performs colour space vector quantization (CSVQ) to
reduce the data volume. Then colour pixel-wise thresholding excludes the pixels
with notably different colours with respect to the training sample, and the re-
maining candidate areas are converted into the greyscale image. A generic Gibbs
random field model (GGRF) of spatially homogeneous textures [10] is used for
selecting a characteristic subset of grey level cooccurrence histograms (GLCH) to
represent the training sample. The desired texture region is obtained by thresh-
olding the total distances between the normalized GLCHs in a moving window
around each pixel of the image to be segmented and the like global GLCHs over
the whole training sample. The basic steps of the algorithm are as follows:

1. Create a codebook with a fixed number of codevectors for the training sample
using CSVQ.

2. Find a probabilistic colour threshold using a Gaussian mixture (GM) ap-
proximation of the codebook.

3. Select the candidate areas in the original image using the above threshold.
4. Convert the training sample and the above candidate area image into the

greyscale images.
5. Find a characteristic subset of the normalized GLCHs.
6. Find an empirical distribution of distances between the local normalized

GLCHs in a fixed moving window around each pixel and the like global
GLCHs over the whole greyscale training sample.

7. Select a distance threshold using the above distribution.
8. Find the desired region map by thresholding the distances between the local

normalized GLCHs in a fixed moving window around each pixel over the
greyscale image of the candidate areas and the global GLCHs for the training
sample.

Colour aerial image in Fig. 1 provided by the Institute of Communication
Theory and Signal Processing (TNT), University of Hannover, is used below as a
test example to search for each of the four training regions: field (top left image
in Fig. 2), vegetation (top left image in Fig. 3), residential area (top left image
in Fig. 4), and industrial area (top left image in Fig. 5).

CSVQ and Colour Tresholding. The CSVQ of a training sample Str is based on
the LBG algorithm [14] and produces a codebook B with a fixed number N of
codevectors where N is less than the total number of different colours in Str.

Let S = [si = [si,r, si,g, si,b] : i = 1, . . . , M ; si ∈ Q3] denote a digital colour
image. Here, Q = {0, . . . , Q} is a finite integer set and si is a vector in the 3D
RGB colour space for the image position i (si,r ∈ Q, si,g ∈ Q, and si,b ∈ Q).
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Fig. 1. Original colour aerial image of the Earth’s surface provided by the Institute of
Communication Theory and Signal Processing (TNT), University of Hannover, Han-
nover, Germany.

The position i is a shorthand notation of the 2D integer Cartesian coordinates
i = (x, y).

Let B = [bk : k = 1, . . . , N ] represent a codebook with a pre-defined number
N of codevectors bk = [bk,r, bk,g, bk,b]. Let Ω = [Ωk : k = 1, . . . , N ] denote such
a partition of the RGB colour space where each region Ωk is associated with the
codevector bk.

The CSVQ problem is stated as follows: given a training sample Str = [str
j :

j = 1, . . . , M tr; str
j ∈ Q3] and a fixed number N of codevectors, find the code-

book B and the patition Ω resulting in the minimum average distortion ∆ of the
coded image with respect to the original one. It satisfies the nearest neighbour
condition (the region Ωk consists of all the colour vectors str

j which are closer to
the codevector bk than to any other codevector) and the centroid condition (the
codevector bk is the average of all the colour vectors str

j which are in the region
Ωk, and at least one training vector belongs to each region). The quantization
replaces each colour vector in the image with the closest codevector, and the
average distortion is given by the average squared error of the quantization. The
CSVQ algorithm is as follows:

1. Given: a training sample Str, a fixed small threshold ε > 0, and an interpo-
lation factor 0 < τ < 1

2. Set N = 1, and Ω1 = {str
j : j = 1, . . . , M tr}, and calculate:

b∗
1 =

∑Mtr

j=1
str

j

Mtr ; s̃tr
j = b∗

1, j = 1, . . . , M tr

v(Ω1) = str
j : max{||str

j − b∗
1||2 : ∀str

j ∈ Ω1};
∆∗ = 1

3Mtr

∑Mtr

j=1 ||str
j − b∗

1||2
3. Split the codevectors: for k = 1, . . . , N , set

b(0)
k = b∗

k + τ(v(Ωk) − b∗
k); b(0)

N+k = b∗
k − τ(v(Ωk) − b∗

k); N = 2N
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Fig. 2. Top left: the training region “field”; top right: the candidate regions; bottom
left: the grey-coded distance map; bottom right: the final region map.

4. Iterative updating: set the iteration index t = 0 and ∆(0) = ∆∗, then:
(a) for j = 1, . . . , M tr, s̃tr

j = b(t)
k : min{||str

j − b(t)
k ||2 : k = 1, . . . , N}

(b) for k = 1, . . . , N ,
– update Ωk = {str

j : s̃tr
j = b(t)

k , j = 1, . . . , M tr}

– update the codevector: b(t+1)
k =

∑
s̃tr
j

=b
(t)
k

str
j∑

s̃tr
j

=b
(t)
k

1

– update v(Ωk) = str
j : max{||str

j − b(t+1)
k ||2 : ∀str

j ∈ Ωk}
(c) set t = t + 1
(d) ∆t = 1

3Mtr

∑Mtr

j=1 ||str
j − s̃tr

j ||2
(e) if (∆t−1−∆t)

∆t−1 > ε, go back to Step 4(a)

(f) set ∆∗ = ∆t. For k = 1, . . . , N , set b∗
k = b(t)

k

5. Repeat Steps 3 and 4 until the desired number of codevectors is obtained.

Pixels in the image S to be segmented having colours that differ much from
the ones of the training sample Str can be excluded from the separation process.
To perform such a colour probabilistic thresholding, the codebook B = [bk : k =
1, . . . , N ] obtained from the training sample Str is approximated by a mixture of
Gaussian probability distributions (GM). The GM has L Gaussian components
N (s|ml,Σl) specified each by the mean colour ml and the covariance matrix Σl

and mixed together with the prior probabilities αl, l = 1, . . . , L:

p(bk|ΛL) =
L∑

l=1

αl N (bk|ml,Σl) . (1)
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Fig. 3. Top left: the training region “vegetation”; top right: the candidate regions;
bottom left: the grey-coded distance map; bottom right: the final region map.

where ΛL = {αl,ml, Σl : l = 1, . . . , L}.
The expectation-maximization (EM) algorithm ([7, 18, 24]) is usually used for

finding the maximum likelihood estimate Λ̃L of the GM parameters ΛL for the
codebook B. This algorithm has three main problems: (i) convergence to the local
maximum with a possibility to converge to a boundary point of the parameter
space with the unbounded likelihood, (ii) critical dependence on initialization,
and (iii) estimation of the number of the mixture components. There exist a
few approaches of how to resolve these problems. One of the best solutions is
provided by the agglomerative EM (AEM) algorithm with the mixture minimum
description length (MMDL) criterion [9].

The candidate areas for further segmentation are selected by thresholding
the probabilities Pr(S|Λ̃L) = [p(si|Λ̃L) : i = 1, . . . , M ] of colours in each pixel
of the original image S to be segmented. Figure 6 presents relative frequency
distributions (in terms of their negative logarithmic values) of the quantised
probabilities of colours for all the pixels in the original image S and the training
samples Str of the field and residential area presented in Figs. 2 and 4. In these
examples the codebook B for each training sample contains 64 codevectors. The
distributions presented show that only a small part of the colours in the original
image are similar to the training field, while much more colours are similar to
the training residential area. The threshold ξf for the training colours eliminates
the “noisy” colours with probabilities smaller than f .

Images S′ = [s′i : i = 1, . . . , M ] of the candidate regions are formed by
thresholding the original colour image S as follows:

s′i = si, if p(si|Λ̃L) ≥ ξf ;
s′i = [Q,Q,Q], otherwise (the white background).
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Fig. 4. Top left: the training region “residential area”; top right: the candidate regions;
bottom left: the grey-coded distance map; bottom right: the final region map.

The top right pictures in Figs. 2 - 5 demonstrate the candidate region images
S′ after applying the threshold ξ0.005 to the original colour image S, given 64
codevectors in the codebook B of the training samples Str “field”, “vegetation”,
“residential area”, and “industrial area”, respectively.

Although such a probabilistic thresholding separates colours similar to the
training sample from the background, the separation is incomplete and different
candidate textures still have to be discriminated.

Texture Similarity Measure. Spatially homogeneous image textures can be mod-
elled as samples of a generic Gibbs random field (GGRF) with multiple pairwise
pixel interactions [10]. Let G = [gi : i = 1, . . . , M ; gi ∈ Q] and Gtr = [gtr

j :
j = 1, . . . , M tr; gtr

j ∈ Q] denote the greyscale versions of the candidate colour
regions S′ and the training sample Str, respectively.

Characteristic geometric structure of interactions and Gibbs potentials giving
quantitative interaction strengths for a particular texture are estimated from the
training sample of the texture. The estimation yields a characteristic subset of
pixel neighbours A specifying most “energetic” translation invariant families of
interacting pixel pairs Ca = {(i, i + a) : i ∈ {1, . . . , M}; i + a ∈ {1, . . . , M}};
a ∈ A. Each family is presented in the GGRF model by the corresponding GLCH
acting as a sufficient statistic.

Let Fa(Gtr) = [Fa(q, s|Gtr) : q, s ∈ Q] and Fa,i(G) = [Fa,i(q, s|G) : q, s ∈
Q] denote the global normalized GLCH for the family Ca over the training
sample Gtr and the like local normalized GLCH over the moving window W̃
around a position i in the image G, respectively. Experiments with different
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Fig. 5. Top left: the training region “industrial area”; top right: the candidate colour
regions; bottom left: the grey-coded distance map; bottom right: the region map.

textures show that the symmetric χ2-distance between these two GLCHs:

Da,i(Fa,i(G),Fa(Gtr)) =
∑

q, s∈Q

(Fa,i(q, s|G) − Fa(q, s|Gtr))2

Fa,i(q, s|G) + Fa(q, s|Gtr)
.

has much less scatter for the training sample than, for instance, the pixel-wise
Gibbs energies or conditional probabilities of signals. Therefore, for the |A| char-
acteristic families, the similarity measure between G and Gtr can be defined as
follows:

Di(Fi(G),F(Gtr)) =
1
|A|

∑
a∈A

Da,i(Fa,i(G),Fa(Gtr)) .

3 Experimental Results

In the experiments below, we used a 17×17 moving window, the reduced number
|Q| = 16 of grey levels, and only one (|A| = 1) most energetic family of pixel
pairs per each training sample Gtr. Figures 7 and 8 show empirical distributions
of the quantized χ2-distances Di(Fi(Gtr),F(Gtr)) over the training sample Gtr

and Di(Fi(G),F(Gtr)) over the image G to be segmented, the training sam-
ples Gtr being “field”, “vegetation”, “residential area”, and “industrial area”,
respectively.

The main part of the distances in Fig. 7 (apart from 5% of the top-rank
ones) are spread over the narrow ranges: e.g., the range 0.22 − 0.61 (“field”)
and 0.08−0.30 (“vegetation”). These ranges become wider in Fig. 8: 0.23−0.51
(“residential area”) and 0.25−0.81 (“industrial area”). The separation threshold
for the distances can be obtained from the corresponding training range.
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Fig. 6. Relative frequency distributions of the quantised probabilities of colours for the
training sample (top row) and the original image (bottom row) with 64 codevectors in
the codebook of the training samples “field” (left column) and “residential area” (right
column).

Fig. 7. Distibutions of the χ2-distances: Di(Fi(G
tr),F(Gtr)) (top) and

Di(Fi(G),F(Gtr)) (bottom) for the training samples Gtr: “field” (left) and
“vegetation” (right).

The bottom left pictures in Figs. 2-5 are the grey-coded distance maps for
the candidate colour regions of the original colour image with the training sam-
ples Gtr “field”, “vegetation”, “residential area”, and “industrial area”, respec-
tively; the darker the point, the smaller the distance. The bottom right pictures
demonstrate the corresponding region maps (the dark areas indicate the desired
regions). The separation is performed by thresholding the pixel-wise distances
with the threshold that rejects 5% of the topmost training distances. Thus the
proposed combination of colour and GLCH-based distance thresholding effec-
tively separates such homogeneous textures as “field” and “vegetation” from
their background. Similar but less accurate separation is obtained for the weakly
homogeneous “residential area”. But the inhomogeneous “industrial area” yields
a very low accuracy of separation because the obtained region covers both the
residential and industrial portions of the image.

496

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



Fig. 8. Distributions of the χ2-distances: Di(Fi(G
tr),F(Gtr)) (top) and

Di(Fi(G),F(Gtr)) (bottom) for the training samples Gtr: “residential area”
(left) and “industrial area” (right).

4 Conclusions

These and other experiments show that the proposed technique results in quite
accurate separation of a translation invariant texture from an arbitrary back-
ground. But this technique is inadequate for translation variant textures, and
how to separate such textures is still an open question. As regarding the trans-
lation invariant stochastic textures and regular mosaics, it will be necessary in
future to find out how to select more specific pixel neighbourhoods for separation
and develop more efficient measures of similarity between the signal cooccurrence
distreibutions collected over small windows.
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