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Abstract. View-dependent mesh refinement techniques typically pre-compute a
hierarchical data structure that is queried at run-time to produce an approximation
of a given mesh. This approximation, or level-of-detail (LOD), can be used in
place of the original object so long as the viewpoint does not change. This should
result in no loss of visible detail, yet should be less computationally expensive.
The approach of existing techniques is to collapse or expand nodes in the hier-
archical data structure level by level. We propose a new method for fast gener-
ation of view-dependent level-of-details when the frame-to-frame coherence is
low, such as when an object moves or rotates at a rapid rate with respect to the
viewpoint.
Our method is based on two new techniques for aggressive detection of visible
parts of the merge tree data structure. The jump split and jump collapse move the
active nodes front up or down the tree many generations at a time, reducing the
number and expense of iterations required to refine the mesh.

1 Introduction

Most three dimensional (3D) objects in computer graphics are represented by polygo-
nal meshes. These polygonal meshes are often obtained using laser scanning equipment
and may consist of millions of triangles that describe an object very accurately. Ren-
dering these complex meshes at interactive frame-rates requires significant rendering
resources.

One popular strategy for reducing the load on rendering hardware is to avoid render-
ing the fine details of an object that may be so fine that they do not contribute visually
to the image produced by the renderer. In such cases, an approximation of the original
object may be used so that only the visible parts of the mesh are rendered at full detail
and other parts are rendered at coarser resolution. Widely used techniques for view-
dependent refinement of meshes are the progressive mesh by Hoppe [6], the merge tree
by Xia et al. [12, 11] and the half-edge collapse hierarchy by Pajarola [9].

The key requirement for any data structure storing the continuous level-of-details
for a mesh is that it should be possible to quickly identify the parts of the mesh to be
rendered when the viewpoint changes. Our technique improves detection of the visible
parts of a model with high level-of-detail when the viewpoint changes rapidly.
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The rest of the paper is organized as follows. We discuss some previous work in
section 2, data structures in section 3, our method for determination of level-of-details
in section 4, some optimizations in our implementation in section 5 and finally, some
results in section 6.

2 Previous work

Several mesh refinement techniques exist that focus upon producing a simplified level-
of-detail from a mesh of arbitrary shape and size.

2.1 Progressive Meshes and the Vertex Split

The Progressive Mesh (PM), developed by Hoppe [6], is a data structure that captures a
continuous sequence of mesh approximations. A progressive mesh is stored as a coarse
base model together with a sequence of detail records that indicate how to incrementally
refine the base mesh into the original complex model. The PM is optimized for view-
independent LOD control.

Each detail record in the progressive mesh carries information for a vertex split
operation that adds one vertex to the model. To produce a simplification, the base mesh
is retrieved from the progressive mesh and a sub-sequence of detail records are used to
perform vertex splits on the base mesh to produce the desired resolution. Each vertex
split operation can be used in reverse as an edge collapse.

2.2 View-dependent Simplification

View-dependent simplification uses characteristics of the scene, such as the viewpoint
of the camera and the location of light sources, to determine the most appropriate level-
of-detail for an object. The main advantage of a view-dependent system is that different
regions of a single object can be displayed at different resolution. For example, regions
of the object at close range can be displayed at higher complexity than regions at greater
distance.

The difficulty in view-dependent simplification arises from the fact that a typical
simplification produces only one sequence of vertex splits to refine the coarse base mesh
into the complete complex mesh. The detail required for a view-dependent simplifica-
tion may occur anywhere in this sequence, hence all vertex splits before that record in
the sequence must be performed. This results in a significant number of vertex splits
that are not necessary but are forced by precedence in the single sequence of detail
records.

Another solution is to provide a large number of independent refinement paths from
the coarse mesh to the original mesh. The paths may be followed to different extents in
order to simplify different areas of the object. Hierarchical data structures were devel-
oped for this purpose.

480

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



3 Data Structures

Mesh refinement requires at least two main data structures. The first is a data structure
to store the mesh itself. The second stores multiple refinement paths from the original
mesh to its coarsest refinement.

3.1 The Half-Edge

Typical mesh data structures are useful for storing static meshes but are not designed
to handle meshes that frequently change topology. As vertices are added to the mesh,
they must be integrated into the existing topology and the mesh must be locally re-
triangulated, requiring polygon adjacency information. We use the half-edge data struc-
ture [10] to store the polygon adjacency information of the mesh. Other benefits are
the consistent space requirements and the efficiency with which vertex splits and edge
collapses can be applied to a mesh stored in this fashion.

3.2 The Modified Merge tree

Our data structure is based on the merge tree data structure by Xia et al. [12, 11] with
several modifications designed to facilitate the traversal techniques described in section
5.

Building the merge tree begins with the original mesh whose vertices comprise the
leaf nodes in the tree. Then the lengths of the half-edges in the mesh are calculated and
inserted into a red-black tree, which is queried for the shortest edge to be a candidate
for collapse. Shortest length is a simplistic metric for selection of edge collapses but
the main focus of this work is elsewhere. In areas of fine detail in the mesh, there are
typically many short edges, which are collapsed first.

Upon an edge collapse, two vertices in the mesh are merged into one representative
vertex. The two original vertices are considered children and the new merged vertex is
considered the parent. This parent is then eligible as a child for future merges with other
vertices. The merges build the merge tree bottom-up. Information associated with the
edge collapse is stored with each node so that the operation may be reproduced, both as
an edge collapse, and in reverse as a vertex split.

Each node also contains information that is used to determine its visibility from
an arbitrary viewpoint. A node contains the bounding cone of vertex normals for the
complete sub-tree below this node. The bounding cone is used at render-time to quickly
check whether the sub-tree below this node is forward-facing. Lastly, each node con-
tains a bounding sphere that encompasses the original positions of all vertices in the
sub-tree below.

When all edges have been removed from the red-black tree it is discarded. The
final collapsed state of the topology is stored as the lowest LOD for a given mesh.
Typically, for closed surface meshes, this final state is two points, since two points are
not sufficient to define one triangle.

In addition to the parent-child links that exist in a regular merge tree, we introduce
child-child links across the span of the tree. These new links facilitate the jump collapse
operation described in section 5.2. The child-child links allow quick access to nearby
nodes.
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4 Producing a Level-of-detail

Recall that the leaves of the merge tree are the original vertices of the mesh. An internal
node of the tree represents a coarser vertex which is a representation of all the vertices in
the subtree rooted at that node. If some part of the object is to be rendered at fine detail,
then vertex split operations in the corresponding part of the merge tree are performed to
add detail to the mesh. For the parts that are non-visible, we can choose a much coarser
level-of-detail that corresponds to performing those vertex split operations higher up
the tree.

When the viewpoint changes in subsequent renderings, it is typically more efficient
to refine this existing LOD that to produce a new LOD from scratch. It is necessary
to determine how the visibility of the object has changed and hence what parts of the
merge tree are visible. Our main contribution in this paper is fast detection of these
visible parts of the merge tree.

Like Xia et al. [12, 11] and Pajarola [9], we store a LOD as a list of active nodes
in the merge tree. To begin, the root node of the merge tree is the only active node.
The active nodes list describes a front in the merge tree, that is, the lowest nodes in the
hierarchy that are visible. This front moves up and down the merge tree depending on
the visibility of the area of the mesh that the merge tree nodes represent. This is shown
in Figure 1.

When the viewpoint changes, our main task is to modify the existing active nodes
list until it is suitable for the new viewpoint. Once we have the new list we can de-
termine the changes between lists and hence the geometric operations required to alter
the existing LOD into a LOD for the new viewpoint. In practice, these two tasks are
performed concurrently, the geometric operations are performed as the active nodes list
is iteratively modified.

4.1 Normal Cone Visibility

We can decide whether a node ni is visible by comparing a view cone at the current
viewpoint and the normal cone at node ni. Recall that the normal cone at ni repre-

Fig. 1. The movement of the active nodes front in a merge tree. White nodes are invisible, grey
are visible and black represent the active nodes. The merge tree in (a) and (b) represent the
same object with a front generated from two viewpoints differing by 180 ˚ . The part of the tree
representing the visible detail changes with the viewpoint.
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sents the union of all the normals of the vertices in the subtree rooted at ni. We denote
the normal cone at ni as NC(ni) and the current view cone as V C. There are three
possibilities for the comparison of V C and NC(ni).

i. There is no overlap between V C and NC(ni). In this case, the part of the mesh in
the subtree rooted at ni is invisible from the current viewpoint. This is typically
the case for the back faces of the object. We do not need to split this node further
as no node below this node will be visible from the current viewpoint. However,
it is possible that this node is not the highest node that is invisible. To check for
that case, we collapse this node and its sibling. This collapse is performed using
the COL operation which is an edge collapse on the half-edge representation of the
mesh.
For large changes in viewpoint, many consequtive COL operations may be nec-
essary to move the active nodes up to the lowest visible part of the merge tree.
However, it is possible to collapse more aggressively to reach a node higher up
the tree more quickly. This is done through our jump collapse or JCOL operation,
described in section 5.2.

ii. There is a partial overlap between V C and NC(ni). In this case, some part of the
subtree rooted at ni is visible from the current viewpoint and some part is invisible.
We need to split this node and perform a visibility test on each child. Splitting this
node is described by information stored in the node and is performed using a vertex
split on the mesh.

iii. V C is completely contained in NC(ni). In this case, a large part of the subtree
rooted at ni is visible from the current viewpoint. In this case, we need to quickly
split many levels in the subtree rooted at ni. We introduce a new split operation
for aggressively generating many nodes from ni and call it a jump split or JSPLIT
operation, described in section 5.1.

4.2 Bounding Sphere Visibility

We can decide whether a node is visible using the bounding sphere at each merge tree
node. Firstly, we can test whether the bounding sphere intersects the view cone. If the
bounding sphere is outside the view cone, then the entire sub-tree rooted at this node
must also be outside the view cone and the node is declared invisible. Secondly, the
bounding sphere can be used to ensure that triangles that are too small to visually con-
tribute to the rendered image are not drawn. The bounding sphere is projected onto the
view-plane to determine the upper bound on the projected area of all vertices in the
sub-tree rooted at this node. If the area is below a user-defined threshold then the node
is declared invisible. Both of these methods are used in FastMesh [9] and we omit the
details from this paper.

4.3 Visibility Status

Each of the items in the list of active nodes also has a status record. This status record
is used to indicate the operation that was performed to enter this item into the list. The
possible states of a node are COL, SPLIT, JCOL, JSPLIT, STABLE and UNKNOWN.
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For example, if a node was split into its two children, the children would have the
status SPLIT. All nodes in the active list are set to the UNKNOWN state whenever the
viewpoint changes as no actions have been performed on this node. The STABLE state
is used when it is determined that a node needs no further split or collapse from the
current viewpoint.

4.4 Modifying the Active Nodes List

Modifying the list is an iterative process that continues until the status of all active
nodes is STABLE. Based on the result of the visibility test and the status of the node
we can determine whether further processing of a node is necessary. For example, if a
node is found to be partially visible and its status is SPLIT, then we have not yet split far
enough, children of this node may also be visible and must be split. Nodes with STABLE
status are skipped in subsequent passes over the active node list. When all active nodes
have STABLE status, no further passes over the list are necessary. Table 1 details the
operations that are performed given the status of the node and the result of the visibility
test.

5 Optimizations

For any given viewpoint there is a correct front in the merge tree that should be stabi-
lized upon. During LOD refinement, the active nodes list moves from the front used at
the previous viewpoint toward the front that is correct for the new viewpoint. In many
cases, such as during small incremental changes in viewpoint, these fronts may not dif-
fer by a great amount. However, for larger changes in viewpoint it is important to move
quickly from one front and stabilize upon the correct new front.

Using existing edge collapse and vertex split techniques, moving the front from
a given node many generations higher or lower in the merge tree will require many
geometric operations, with a visibility test performed before each. In the interest of
speed, it is important to minimize the number of visibility tests that are performed.
The jump split and jump collapse operations are an attempt to reduce the number and
expense of iterations required to move the front.

UNKNOWN JSPLIT SPLIT COL JCOL

invisible JCOL COL NO OP COL JCOL
partial SPLIT SPLIT SPLIT NO OP SPLIT

full JSPLIT JSPLIT SPLIT NO OP SPLIT
Table 1. Operations performed given the status of the node and the result of the visibility test.
For example, if the status of the node is SPLIT and the node is fully or partially visible then the
front has not yet moved to the lowest extent of the visible nodes, more splits are necessary. The
mnemonic NO OP means no operation is necessary.
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5.1 The Jump Split Operation (JSPLIT)

The JSPLIT operates on the assumption that if the change in viewpoint is large, then a
given node that is ready to split will be likely to have many descendants that should also
be split. We can reduce the number of visibility tests performed by doing only one at
the top node and then assuming the same result for successive generations in the tree. If
the assumption is too ambitious, too many generations may be split and some collapses
will be needed.

For a jump downward of n generations, we perform a breadth first traversal of the
tree from the current node to a depth of n generations. Figure 2 i) is a downward jump
of one generation from node 2. The result of this traversal is a list of the nodes in the
sub-tree beneath the current node, in this case 2, 5 and 6. We attempt to split all of these
candidates.

Vertex splits must be performed partially ordered top-down in the hierarchy. The
breadth first search is used to seed the split candidates list but some jump candidates
may not be able to be split without other non-ancestor nodes being split first. These
dependencies are caused by geometric restrictions on the topology of the mesh and are
well understood [9]. If a split candidate is unable to be performed due to a dependency
on another node, this node is inserted into the split candidate list and immediately at-
tempted. Once all split candidates have been split, the jump split is complete.

Note that the purpose of the JSPLIT operation is to quickly reach the visibility front.
There is a possibility that aggressive use of the JSPLIT operation may push the front
beyond the visible internal nodes of the tree. Hence, we only use the JSPLIT operation
when it is clear that the sub-tree nodes are likely to be visible as described in section
4.1.

5.2 The Jump Collapse Operation (JCOL)

The jump collapse operation seeks to aggressively move the front up the tree by iden-
tifying groups of adjacent invisible nodes. Instead of collapsing these nodes higher up
the tree level by level, it is more efficient to collapse many levels at a time by replacing
them with their common ancestor. The common ancestor will serve as a coarse approx-
imation for these invisible nodes.

Typically, when an invisible node is found in the front, it is collapsed along with its
sibling, moving the front up the merge tree. When the viewpoint has changed by a large
amount, a large part of the object will become invisible and hence some previously
visible large areas of the merge tree will have become invisible. The jump collapse
takes advantage of this by searching left and right, using the child-child links in the
merge tree, for a sequence of adjacent invisible nodes. The search is conducted in both
directions only until the first partially or fully visible node is found. The list of invisible
nodes are called the collapse candidates. In figure 2, if the jump collapse begins at node
10 it will search left and right in the tree to find the collapse candidates, 8, 9, 10, 11 and
12.

For a collapse to take place, two candidates in the list must have the same parent.
If a collapse is performed after consulting the visibility of only one child then the other
child may be visible and the jump collapse would be incorrect. Searching the list for
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nodes with the same parent is efficient due to the nature of the intra-generational links.
Nodes with the same parent occur consecutively, if at all.

The algorithm continues in a loop, looking for sequences in the list, performing
the appropriate collapse, then replacing each list item with its parent and looking for
longer sequences, until no sequence of sufficient length is found. Then the items in the
insufficient sequence are removed from the list and the algorithm considers only the
remainder in future iterations. Once all candidates are removed from the list, the jump
collapse is complete.

6 Results

Our experiments were performed on a Intel Pentium 4 system at 2.4 Ghz with NVidia
GeForce 4 graphics hardware. The implementation runs under Linux, is written in C
and uses OpenGL.

At this stage we have experimented with the Stanford Bunny and the Georgia Tech
Skeleton Hand. Our main aim was to measure the degree to which use of our JSPLIT
and JCOL operations decreased the time required to refine the mesh after changes in
the viewpoint. The timings for refining the mesh are presented in table 2 and represent
the duration of 50 viewpoint changes by the specified angle.

Using jump splits of moderate length, two to four generations, decreases the du-
ration of refinement for large changes in viewpoint. When the change in viewpoint
decreases, the change in the position of the front in the merge tree is not sufficient to
allow the jump split to provide any significant benefit. When jumps of high depth are
used, the front is moved too far, past the lowest extent of the visible part. Refinement
then uses collapses to undo some of the jump split and the benefit of fewer visibility
tests is lost.

Model Faces 180 ˚ 180 ˚ jump 90 ˚ 90 ˚ jump 45 ˚ 45 ˚ jump

Stanford Bunny 69451 10.82 9.27 7.68 6.91 5.77 5.48
Skeleton Hand 654666 61.58 50.34 47.01 43.39 36.65 33.96

Table 2. Performance of view-dependent refinement of the Stanford Bunny and Skeleton Hand
meshes. Times (in seconds) are for 50 rotations of the viewpoint by the specified angle around
a vertical axis. Results are shown with and without enhancement by the jump split and jump
collapse operations described in this paper.

The jump collapse further reduces the duration of refinements. As the change in
viewpoint decreases there is less change in the front and fewer opportunities to save
time using the jump collapse. For large changes in viewpoint the jump collapse and
jump split reduce the duration of refinement significantly.
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i) ii)

Fig. 2. (i) The Jump Split Operation performed on an example merge tree (a) and the result (b).
White nodes are invisible, grey are visible and black represent the active nodes. The jump split is
designed to rapidly move the front down the merge tree. The jump split begins at node 2, yet split
three nodes {2, 5, 6} after performing only one visibility test on node 2. (ii) The Jump Collapse
Operation performed on an example merge tree (a) and the result (b). White nodes are invisible,
grey are visible and black represent the active nodes. The jump collapse is designed to rapidly
move the front up the merge tree. This jump collapse begins at node 10 by searching left and right
for other invisible nodes {9, 10, 11, 12}. The highest common ancestor of only this set of nodes
is node 2 so the jump collapse ceases at that node.

a) b)

Fig. 3. A view-dependent refinement of the Stanford Bunny. The wireframe of the mesh is also
rendered to emphasise geometric complexity. Image a) is a refinement of the bunny seen from
the viewpoint, the mesh retains much of its fine detail using 7709 of the 69451 polygons in the
original mesh. Image b) is a refinement seen from opposite the viewpoint, the side of the mesh
facing away from the viewpoint is coarsely approximated.
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