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Abstract. Estimation of parameters from image tokens is a central
problem in computer vision. FNS, CFNS and HEIV are three recently
developed methods for solving special but important cases of this prob-
lem. The schemes are means for finding unconstrained (FNS, HEIV) and
constrained (CFNS) minimisers of cost functions. In earlier work of the
authors, FNS, CFNS and a version of HEIV were applied to a specific
cost function. Here we outline an extension of the approach to more gen-
eral cost functions. This allows the FNS, CFNS and HEIV methods to
be placed within a common framework.

1 Introduction

A common task in computer vision is the estimation of the parameters that
describe a relationship between image feature locations. The estimation problem
can often be reduced to minimising a cost function. FNS, CFNS and HEIV
are three recently developed techniques for finding minimisers of cost functions
underpinning a special but important class of estimation problems. FNS and
HEIV aim to determine unconstrained minimisers, while CFNS seeks to isolate
constrained minimisers. In earlier work of the authors [2, 4, 3], FNS, CFNS and
a core version of HEIV were applied to a specific cost function. The purpose of
this article is to outline how the methods can be extended to cope with more
general cost functions, including the cost function that pertains to the original
version of HEIV [8] which is different from the core version.

We start by introducing an optimal, maximum likelihood cost function that
is appropriate for a class of estimation problems. We then evolve two approxi-
mations to this function. One of these is the cost function to which the standard
versions of FNS and CFNS and the core version of HEIV apply. The other is the
cost function recognised here as the function underlying the original version of
HEIV. Both of these functions have a similar form and can be viewed as special-
isations of a single model function. The subsequent development, based largely
on a critical review of our earlier work, is concerned with advancing variants of
FNS, HEIV and CFNS for this model function. Finally, we discuss the effects
of applying the derived methods to the two approximated maximum likelihood
functions.
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2 Estimation Problem

Relationships between image tokens can often be arranged into parametric mod-
els. Of particular importance are models expressed by means of a principal con-
straint of the form

θT u(x) = 0. (1)

Here θ = [θ1, . . . , θl]T is a vector that represents parameters describing a par-
ticular model; x = [x1, . . . , xk]T is a vector that represents an ideal data point
conforming to the model; and u(x) = [u1(x), . . . , ul(x)]T is a vector with the
ideal data point transformed so that: (i) each component ui(x) is a quadratic
form in the compound vector [xT , 1]T , (ii) the last component ul(x) is equal
to 1. In some cases, the parameters are subject to an ancillary constraint not
involving model points. A common form of the ancillary constraint is

φ(θ) = 0, (2)

where, for some real number κ, φ is a scalar-valued function homogeneous of
degree κ—that is such that φ(tθ) = tκφ(θ) for every non-zero scalar t.

Associated with (1) and (2) is the following estimation problem: Given a
collection x1, . . . ,xn of observed data points and a meaningful cost function that
characterises the extent to which any particular θ fails to satisfy the system of
copies of equation (1) associated with x = xi (i = 1, . . . , n), find θ �= 0 satisfying
(2) for which the cost function attains its minimum.

Example estimation problems of the above form include the estimation of the
coefficients of the epipolar equation [5] and the differential epipolar equation [1],
and conic fitting [6]. Each of the first two problems involves a separate ancillary
cubic constraint, while the last problem involves no constraint.

3 The ML Cost Function

A statistically viable cost function can be derived by adopting the measure-
ment model whereby the observed data points are generated from model points
through a Gaussian error process. For each i = 1, . . . , n, let Λxi

be a k × k
symmetric covariance matrix quantifying errors in the measurement of the data
point xi. The measurement model combined with the principle of maximum
likelihood produces an adequate discrepancy measure in the form of the squared
Mahalanobis distance

d2
Mahal(x1, . . . ,xn;x1, . . . ,xn) =

n∑
i=1

(xi − xi)
T Λ−1

xi
(xi − xi)

between the data points (x1, . . . ,xn) and the model points (x1, . . . ,xn). For
each θ �= 0, when restricted to the set of those (x1, . . . ,xn) that satisfy

θT u(x1) = · · · = θT u(xn) = 0,
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the function (x1, . . . ,xn) �→ d2
Mahal(x1, . . . ,xn;x1, . . . ,xn) attains a constrained

minimum at some point (xθ
1 , . . . ,xθ

n). All these minima can be assembled into a
function by setting

JML(θ) = d2
Mahal(x1, . . . ,xn;xθ

1 , . . . ,xθ
n).

This function is the optimal, maximum likelihood cost function for θ-estimation.
The minimiser of JML, θ̂ML, is the maximum likelihood estimate of θ. Of all
candidate parameter vectors, θ̂ML is the preferred vector that makes the observed
data as likely as possible.

Finding (xθ
1 , . . . ,xθ

n) for each θ is a daunting task, and so direct minimisation
of JML is rather impractical. A more feasible approach is to seek to minimise an
appropriate approximation of JML that captures near-optimality. A key to the
development of various approximations is an alternative formula for JML.

For each γ = 1, . . . , l, the component uγ(x) is a quadratic function in x.
Therefore ∂2

xxuγ(y) = [(∂2uγ/∂xi∂xj)(y)]1≤i,j≤k, the Hessian matrix of uγ at
y, is independent of y. Denote by Hγ the unique value of ∂2

xxuγ . Let

µγ(x,y) =
1
2
(x − y)T Hγ(x − y) (1 ≤ γ ≤ l)

and µ(x,y) = [µ1(x,y), . . . , µl(x,y)]T . Applying the method of Lagrange Mul-
tipliers to the constrained minimiser (xθ

1 , . . . ,xθ
n), one can establish the following

crucial formula:

JML(θ) =
n∑

i=1

(θT (u(xi) − µ(xi,x
θ
i )))2

θT ∂xu(xθ
i )Λxi

∂xu(xθ
i )T θ

. (3)

Here ∂xu(y) = [(∂ui/∂xj)(y)]1≤i≤l,1≤j≤k denotes the Jacobian matrix of u at
y.

4 Two AML Cost Functions

Eq. (3) can be exploited to derive two approximations to JML. In both of them
∂xu(xθ

i ) will be replaced by ∂xu(xi). In addition, one approximation will treat
µi(xi,x

θ
i ) as an irrelevant second-order term and set it to zero. The other ap-

proximation will replace µi(xi,x
θ
i ) by an average value of some kind. Careful

analysis shows that in the latter case a natural replacement for µ(xi,x
θ
i ) is the

ith second-order correction µ(xi) = [µ1(xi), . . . , µl(xi)]T defined by

µγ(x) =
1
2

tr(HγΛx) (1 ≤ γ ≤ l).

Note that the last component of µ(x), µl(x), is null, since ul(x) = 1 and,
consequently, H l = 0. Thus the first approximation of JML takes the form

J
(1)
AML(θ) =

n∑
i=1

(θT u(xi))2

θT ∂xu(xi)Λxi∂xu(xi)
T
θ

,
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whereas the second approximation is given by

J
(2)
AML(θ) =

n∑
i=1

(θT (u(xi) − µi))2

θT ∂xu(xi)Λxi∂xu(xi)
T
θ

.

For each i = 1, . . . , n, let v1(xi) = u(xi), v2(xi) = u(xi) − µ(xi), A
(α)
i =

vα(xi)vα(xi)T (α = 1, 2), and Bi = ∂xu(xi)Λxi
∂xu(xi)

T
. With this notation,

J
(α)
AML can be simply written as

J
(α)
AML(θ) =

n∑
i=1

θT A
(α)
i θ

θT Biθ
(α = 1, 2).

Note that, since ul(x) = 1 and µl(x) = 0, the last component of vα(x), vα,l(x),
equals 1.

5 Model Cost Function

The functions J
(1)
AML and J

(2)
AML have a similar structure and can be subsumed

into a single model function

JAML(θ) =
n∑

i=1

θT Aiθ

θT Biθ
,

where all the Ai and Bi are non-negative definite l× l matrices. By convention,
JAML will be referred to as the approximated maximum likelihood cost function.
The unconstrained minimiser of JAML will be denoted θ̂u

AML, and if an ancillary
constraint (as per (2)) applies, the constrained minimiser of JAML will be denoted
θ̂AML. We shall mainly consider JAML with the Ai and Bi such that

Ai = v(xi)v(xi)T (4)

Bi = ∂xv(xi)Λxi
∂xv(xi)

T (5)

for some v(x) = [v1(x), . . . , vl(x)]T with vl(x) = 1. Note that with v(x) =
vα(x), J

(α)
AML recovers JAML.

6 Variational Equation

The unconstrained minimiser θ̂u
AML satisfies the variational equation

[∂θJAML(θ)]θ=θ̂u
AML

= 0T (6)

with ∂θJAML the row vector of the partial derivatives of JAML with respect to
θ. It is readily verified that

[∂θJAML(θ)]T = 2Xθθ, (7)
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where Xθ is an l × l symmetric matrix given by

Xθ =
n∑

i=1

Ai

θT Biθ
−

n∑
i=1

θT Aiθ

(θT Biθ)2
Bi.

Thus (6) can be rewritten as

[Xθθ]θ=θ̂u
AML

= 0. (8)

The latter equation provides the basis for isolating θ̂u
AML.

There are two fundamental methods for solving (8). One is the fundamental
numerical scheme (FNS) introduced by Chojnacki et al. [2]. Another is the
heteroscedastic errors-in-variables (HEIV) scheme that was first proposed by
Leedan and Meer [8] and further developed by Matei and Meer [10, 9].

7 Fundamental Numerical Scheme

A vector θ satisfies (8) if and only if it is a solution of the ordinary eigenvalue
problem

Xθξ = λξ (9)

corresponding to the eigenvalue λ = 0. This suggests an iterative method for solv-
ing (8) whereby if θc is a current approximate solution, then an updated solution
θ+ is a vector chosen from that eigenspace of Xθc

which most closely approxi-
mates the null space of Xθ; this eigenspace is, of course, the one corresponding
to the eigenvalue closest to zero in absolute value. The process can be started by
computing the algebraic least squares (ALS) estimate, θ̂ALS, defined as the un-
constrained minimiser of the cost function JALS(θ) = ‖θ‖−2

∑n
i=1 θT Aiθ, with

‖θ‖ = (
∑l

j=1 θ2
j )1/2. The estimate θ̂ALS coincides, up to scale, with an eigenvec-

tor of
∑n

i=1 Ai associated with the smallest eigenvalue. When the Ai satisfy (4),
this eigenvector can be found by performing singular-value decomposition on the
matrix [v(x1), . . . ,v(xi)]T . The overall procedure is summarised in Algorithm 1.

Algorithm 1. Fundamental numerical scheme

1. Set θ to θ̂ALS.
2. Repeat:

(a) Compute the matrix Xθ ;
(b) Compute a normalised eigenvector of Xθ corresponding to the eigen-

value closest to zero (in absolute value);
(c) Take the computed eigenvector for an update of θ;
until convergence.
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8 HEIV: A Basic Form

Given the representation Xθ = Mθ−Nθ, where Mθ =
∑n

i=1(θ
T Biθ)−1Ai and

Nθ =
∑n

i=1(θ
T Aiθ)(θT Biθ)−2Bi, the variational equation (8) can be restated

as
Mθθ = Nθθ, (10)

where the evaluation at θ̂u
AML is dropped for clarity. The matrices Mθ and Nθ

are non-negative definite (with Mθ, a sum of n summands, generically positive
definite if n ≥ l), so θ can be viewed as a solution of the generalised eigenvalue
problem

Mθξ = λNθξ (11)
corresponding to the eigenvalue λ = 1. The heteroscedastic errors-in-variables
scheme in basic form, or HEIV with intercept [9], exploits the above eigenvalue
problem in a manner analogous to that in which FNS utilises the eigenvalue
problem (9). The details are given in Algorithm 2.

Algorithm 2. Basic HEIV scheme

1. Set θ to θ̂ALS.
2. Repeat:

(a) Compute the matrices M θ and N θ ;
(b) Compute a normalised eigenvector of the eigenvalue problem

M θξ = λN θξ

corresponding to the eigenvalue closest to 1;
(c) Take the computed eigenvector for an update of θ;
until convergence.

9 Reduced Variational Equation

If the Ai and Bi satisfy (4) and (5), respectively, for some v(x) = [z(x)T , 1]T ,
where z(x) is a vector of length l − 1, then the variational equation can be re-
expressed as a system of equations. To see how this can be done, first partition
the parameter vector as θ = [ηT , α]T with η a length l − 1 vector and α a
scalar. Further, let z = (

∑n
i=1 βi)−1

∑n
i=1 βizi with βi = (ηT B0

i η)−1 and B0
i =

∂xz(xi)Λxi
∂xz(xi)

T
, and let z′

i = zi−z for each i = 1, . . . , n. Finally, define two
(l−1)× (l−1) matrices M ′

η =
∑n

i=1 βiz
′
iz

′
i
T and N ′

η =
∑n

i=1

(
βiz

′
i
T η

)2
B0

i . A
fundamental result that can now be established [3] is that θ = [ηT , α]T satisfies
(10) if and only if the following system of equations holds:

M ′
ηη = N ′

ηη, (12)

α = −zT η. (13)
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The first of these equations involves only η and can be solved in isolation; the
second expresses α in terms of η. Of the two constraints, the first plays a leading
role and is called the reduced variational equation. A key feature of this equation
is that its right-hand side matrix N ′

η is generically positive definite if n ≥ l. In
contrast, Nθ is singular, since all the Bi have the length l vector [0, . . . , 0, 1]T

in their respective null spaces.

10 HEIV: A Reduced Form

Define the algebraic least squares estimates η̂ALS and α̂ALS as the respective
components in the representation θ̂ALS = [(η̂ALS)T , α̂ALS]T . Analogously, de-
fine the unconstrained approximated maximum likelihood estimates η̂u

AML and
α̂u

AML via the decomposition θ̂u
AML = [(η̂u

AML)T , α̂u
AML]T . In view of (13), α̂u

AML

is uniquely determined by η̂u
AML—taking z with the βi = ((η̂u

AML)T B0
i η̂u

AML)−1

results in α̂u
AML = −zT η̂u

AML. Now, the matrix N ′
η is generically positive-

definite, and so the generalised eigenvalue problem M ′
ηζ = λN ′

ηζ is non-
degenerate. Accordingly, η̂u

AML can be determined via a simple modification of
the HEIV algorithm. The steps of this HEIV scheme in reduced form, or HEIV
without intercept [9], are given in Algorithm 3.

Algorithm 3. Reduced HEIV scheme

1. Set η to η̂ALS.
2. Repeat:

(a) Compute the matrices M ′
η and N ′

η ;
(b) Compute a normalised eigenvector of the eigenvalue problem

M ′
ηζ = λN ′

ηζ

corresponding to the eigenvalue closest to 1 and take this eigenvector
for η;

(c) Take the computed eigenvector for an update of η;
until convergence.

11 Variational System

Applied to the constrained minimiser θ̂AML, the method of Lagrange Multipliers
yields

[∂θJAML(θ) + λ∂θφ(θ)]θ=θ̂AML
= 0T ,

φ(θ̂AML) = 0,
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where λ is scalar. When properly combined with the identity ∂θφ(θ)θ = κφ(θ)
obtained by differentiating (2) with respect to t and evaluating at t = 1, this
variational system can be converted into a single equation similar to (8). Of
many equivalent forms, the one useful to us reads

[Qθθ]θ=θ̂AML
= 0, (14)

where Qθ = ZT
θ Zθ and Zθ is an l × l matrix defined as follows. Let P θ = I l −

‖aθ‖−2aθaT
θ , where I l denotes the l × l identity matrix and aθ = [∂θφ(θ)]T /2.

Denote by Hθ the Hessian of JAML at θ; more explicitly, Hθ = 2(Xθ − T θ),
where

T θ =
n∑

i=1

2
(θT Biθ)2

[
AiθθT Bi + BiθθT Ai − 2

θT Aiθ

θT Biθ
BiθθT Bi

]
.

Let Φθ be the Hessian of φ at θ. For each i ∈ {1, . . . , l}, let ei be the length
l vector whose ith entry is unital and all other entries are zero. With all the
preparations now completed, we let Zθ = Aθ + Bθ + Cθ, where

Aθ = P θHθ(2θθT − ‖θ‖2I l),

Bθ = ‖θ‖2‖aθ‖−2
[ l∑

i=1

(Φθeia
T
θ + aθeT

i Φθ)XθθeT
i − 2‖aθ‖−2aθaT

θ XθθaT
θ Φθ

]
,

Cθ = ‖aθ‖−2κ
[φ(θ)

4
Φθ + aθaT

θ − φ(θ)
2

‖aθ‖−2aθaT
θ Φθ

]
.

Here, individually, the matrices Aθ, Bθ and Cθ do not have any special signif-
icance and serve only to split the otherwise lengthy formula.

12 Constrained Fundamental Numerical Scheme

Letting Qθ play the role of Xθ, one can advance an algorithm fully analogous to
FNS [4]. The steps of the resulting constrained fundamental numerical scheme
(CFNS) are given in Algorithm 4.

Algorithm 4. Constrained fundamental numerical scheme

1. Set θ to θ̂ALS.
2. Repeat:

(a) Compute the matrix Qθ ;
(b) Compute a normalised eigenvector of Qθ corresponding to the eigen-

value closest to zero (in absolute value);
(c) Take the computed eigenvector for an update of θ;
until convergence.
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For CFNS to converge to a vector θ∗ solving (14), the zero eigenvalue of
Qθ∗ must be simple, i.e., the null space of Qθ∗ must be one-dimensional, with
all members being scalar multiples of θ∗. When this condition is satisfied, the
algorithm seeded with an estimate close enough to θ∗ produces updates quickly
converging to θ∗. In practice it is required that, for each iterate θc, the smallest
(non-negative) eigenvalue of Qθc

should be sufficiently well separated from the
remaining eigenvalues. Sometimes, to meet the condition, the data will have to
be first suitably transformed and their covariances propagated; upon application
of CNFS, the estimate will then have to be conformally readjusted (transformed
back) to account for the data-cum-covariances transformation. Such is the case
for fundamental matrix estimation, where an initial transformation of raw data
and their covariances is necessary for a successful application of CFNS [12].

Interestingly, many other, often simpler, equivalent forms of (14) like

[Y θθ]θ=θ̂AML
= 0 with Y θ = ‖θ‖2P θXθP θ + I l − P θ

lead to non-converging algorithms, with divergence occurring irrespective of the
distance of the initial estimate from the desired limit. This reflects the rather
complicated behaviour of the function that sends a symmetric matrix to the
eigenspace corresponding to the eigenvalue closest to zero.

13 Discussion and Conclusion

With the general formulation of various algorithms finally accomplished, we
proceed to discuss implications for the AML cost functions.

The function J
(1)
AML was first proposed by Kanatani [7] as a cost function cap-

turing geometric fitting. An important precursor of J
(1)
AML was Sampson’s [11] cost

function for some form of orthogonal regression. FNS and CFNS were introduced
by the authors [2, 4] to perform unconstrained and constrained minimisation of
J

(1)
AML. Later it was recognised that the core version of HEIV that was first

adopted in [9] computes—in both basic and reduced forms—the unconstrained
minimiser of J

(1)
AML [3].

The function J
(2)
AML introduced here is a second-order variation of J

(1)
AML. In

some cases, like that of fundamental matrix estimation, the two functions coin-
cide. Generally, they are different, as exemplified by the problem of estimating
the coefficients of the differential epipolar equation. The significance of J

(2)
AML is

that it allows the original version of HEIV [8] to be placed within the operational
framework of FNS, CFNS and the core version of HEIV. An inspection of equa-
tions (22), (23), (24) in [8] reveals that the system of equations describing the
estimate produced by the HEIV scheme is equivalent to the system comprising
(12) and (13) for computing the unconstrained minimiser of J

(2)
AML. Thus the

original form of HEIV turns out to be identical with the reduced HEIV scheme
for computing the unconstrained minimiser of J

(2)
AML. Of course, this minimiser

can also be recovered using FNS or the basic HEIV scheme, both based on J
(2)
AML.
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Note that the original derivation of HEIV did not utilise J
(2)
AML—see [3] for a more

detailed explanation.
On a final point, CFNS offers a simultaneous extension of the FNS and HEIV

methods to the case of constrained minimisation. In particular, the J
(1)
AML and

J
(2)
AML-based versions of CFNS are the constrained-minimisation counterparts of

the core and original versions of HEIV, respectively. The first of these is the
original version of CFNS as introduced in [3]. The second emerges as a new
method still to be tested and compared with other techniques.

Summarising, this paper has outlined a unifying approach to three recent
estimation techniques: FNS, CFNS and HEIV. The proposed formulation allows
for consistent analysis of various existing algorithms and advancement of new
variants.
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