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Abstract. Unit quaternion is an ideal parameterization for joint rota-
tions. However, due to the complexity of the geometry of S3 group, it’s
hard to specify meaningful joint constraints with unit quaternion. In this
paper, we have proposed an effective and accurate method to specify the
rotation limits for joints parameterized with the unit quaternion. Joint
constrains constructed with our method are adequate for most applica-
tions.

1 Introduction

In computer graphics and animation, articulated characters are among the most
commonly used objects, and are a convenient model to synthesize moving hu-
mans and animals. An articulated character is a hierarchical structure consisting
of a set of segments, connected by joints. To manipulate a character, we need
to specify the position of the joints as well as their orientation. For the rotation
motion, a joint has up to 3 degrees of freedom(DOF). It’s easy to deal with
a joint with only one DOF, such as interphalangeal joints, or two independent
DOF, such as the knee joint. We can use one parameter to specify the angle of
rotation for each DOF. For joints with 3 DOF, such as shoulder and hip, the
rotation can be decoupled into a spherical motion, which has 2 DOF, and a twist
motion, which is independent of the spherical motion. Therefore, what is most
important and difficult for the parameterization of the joints is to parameterize
the spherical rotation.

1.1 Background and Related Works

There are quite some well know methods of parameterization for spherical rota-
tion. The most widely used one is Euler angles, which represent a general rotation
as successive rotations about the three principal axes. Other parameterizations
include rotation matrices [7], unit quaternion [11, 12], axis-angle (or exponen-
tial map) [3]. Good comparison and investigation of these parameterization for
the purposes of animation of articulated bodies can be found in [1–3]. As noted
by Grassia, each one possesses its advantages and drawbacks, with respect to
the intended application[3]. In addition to these parameterizations, Huang and
Prakash advocated a new sinus cone parameterization [5].
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Among all these parameterizations, unit quaternion possesses some impor-
tant advantages over other ones for the parameterization of spherical joint mo-
tion. First of all, it’s free of singularity. Also, unit quaternion is a natural way
to specify rotations. With methods developed by Shoemaker [11] and Kim et
al. [6], it’s easy to produce curves with high order continuity, such as splines
and Bézier curves, in SO(3), and hence produce smooth and natural motions
between key orientations. In addition, the result of two consecutive rotation can
be calculated directly as the product of the two unit quaternion, which is not
possible for other parameterization such as Euler angles.

However, because the geometry of the rotation space SO(3) is much more
complicated than Euclidian space IR3, it’s very difficult to impose rotation limits
directly in unit quaternion space. Lee showed how to specify conic, axial and
spherical limits [8]. Yet, to model spherical joints exactly, more meaningful and
complex limits are need.

In this paper, we will discuss how to parameterize spherical joints with unit
quaternion so that complex joint limits can be imposed. The primary value of
our work is that we present a method to specify the rotation limits of a joint
parameterized with unit quaternion. Joint constrains specified by our method
are complex and accurate enough for a wide range of applications.

2 Preliminary

Quaternions, discovered by Sir William Rowan Hamilton [4], provide a solid
base to represent 3D rotation. In this section, we give a brief introduction to
quaternions and unit quaternion.

2.1 Quaternion Basics

The four-dimensional space of quaternions is spanned by a real axis and three
orthogonal imaginary axes, denoted by î, ĵ, and k̂. A quaternion q = w + xî +
yĵ + zk̂ can be denoted as an ordered pair of real number and a vector: q =
(w,v) ∈ IR× IR3, where v = (x y z). The product of two quaternions q1 and q2

can be written as:

q1q2 = (w1,v1)(w2,v2)
= (w1w2 − v1 · v2, w1v2 + w2v1 + v1 × v2). (1)

Quaternions form a non-commutative group under multiplication. A quaternion
of unit length is called a unit quaternion, which can be considered as a point on
the unit hyper-sphere S3. The inverse of a quaternion q is q−1 = (w,−x − y −
z)/(w2 + x2 + y2 + z2).

Euler proved that, any orientation of a rigid body can be represented as
a rotation about a fixed axis v by an angle θ from a reference orientation,
where v is a 3-dimensional vector of unit length. With a unit quaternion q =
(cos θ

2 ,v sin θ
2 ) ∈ S3, we can describe a rotation map

Rq(a) = qpq−1, for p ∈ R3. (2)
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Here a = (x y z) is a unit vector in IR3, and q is a unit quaternion whose real
part is zero: (0, x y z). Note that

Rq1(Rq2(a)) = Rq1q2(a). (3)

which means that the effect of two consecutive rotations q1 and q2 can be
calculated directly as the product of the two unit quaternions q1q2.

2.2 Exponential and Logarithmic Maps

One of the main connections between vectors and unit quaternions is the ex-
ponential mapping. Quaternion exponentiation is defined in the standard way
as:

exp(q) = 1 +
q
1

+
q2

2!
+ · · · + qn

n!
+ · · · (4)

If the real part of q is zero, then exponential mapping gives a unit quaternion
which can be expressed in a closed-form:

exp(q) = exp(0,v) =
(

cos ‖v‖, v

‖v‖ sin ‖v‖
)

. (5)

This map is not one-to-one. To define its inverse function, we limit the domain
such that ‖v‖ < π. Then, the exponential map becomes one-to-one and thus its
inverse map S3\(−1, 0 0 0) → IR3 is defined as:

log(q) = log(w,v) =




π
2 v, if w = 0,
v

‖v‖ tan−1 ‖v‖
w , if 0 < |w| < 1,

0, if w = 1.

(6)

3 Method

3.1 Standard Unit Quaternion

For an orientation donated by vector a, giving a unit quaternion q, we can get
a unique resultant orientation a′. However, the reverse is not always true. A
unit quaternion q = (cos θ

2 ,v sin θ
2 ) represents a rotation around the vector v

with the amount θ. For two orientations a and a′, there are numerous ways of
rotation from a to a′, as illustrated in Fig. 1(a). To find a one-to-one relation
between resultant orientation and unit quaternion, we need a standard form for
all unit quaternions that transform a vector into the same orientation.

For any two vectors a and a′, unless a = −a′, the transform from a into
a′ can be achieved by a single direct rotation. Direct rotation means that the
angle of rotation is minimum among all the rotations from a to a′, which is
cos−1(a · a′), and the axis of rotation is a × a′, as illustrated in Fig. 1(b).

Thus, for a reference orientation a, any unit quaternion q �= (−1 0 0 0) can
be standardized as:

qs =
(

cos
ψ

2
,

v

‖v‖ sin
ψ

2

)
(7)
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(a) (b)

Fig. 1. (a)Different ways to map rotation from a to a′. (b) Direct rotation from a to
a′.

in which
ψ = cos−1(a · a′), (8)

v = a × a′, (9)

and
(0,a′) = q(0,a)q−1. (10)

Let k = a ·a′, and u = (a×a′)/(‖a×a′‖), (7), (8), and (9) can be simplified
as

qs =

(√
1 + k

2
,u

√
1 − k

2

)
. (11)

Note that unit vector u always lies in the plane orthogonal to the reference
vector a.

3.2 Imposing Joint Constraints

A standard unit quaternion qs =
(√

1+k
2 ,u

√
1−k
2

)
represents the rotation of

the reference vector around unit vector u with the amount of cos−1 k. If we
impose limits on the amount of rotation for each vector u, the rotation limits of
the spherical rotation are imposed. Therefore the joint constrain is denoted by

L(a) =

{(√
1 + k

2
,u

√
1 − k

2

) ∣∣∣∣ 0 ≤ cos−1 k ≤ f(u), ‖u‖ = 1,u · a = 0

}
,

(12)
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or

L(a) =

{(√
1 + k

2
,u

√
1 − k

2

) ∣∣∣∣ g(u) ≤ k ≤ 1, ‖u‖ = 1,u · a = 0

}
, (13)

in which f and g are functions of unit vector, and g(u) = cos (f(u)).
In the form of exponential mapping, the rotation limits can be represented

as
L(a) =

{
e

ψ
2 u

∣∣ 0 ≤ ψ ≤ f(u), ‖u‖ = 1,u · a = 0
}

, (14)

For all standard unit quaternions qs =
(√

1+k
2 ,u

√
1−k
2

)
, vector u must lie

in the same plane which is orthogonal to the reference vector. We can utilize this
feature and further parameterize vector u.

For the simplicity of calculation, without losing generality, we can arrange
the local coordinate frame in such a way: the origin of the frame is located at the
center of the joint, and the positive orientation of z-axis aligns with reference
orientation a. We choose the reference orientation in a such way that the only
singularity orientation −a is out of reach in nature. Thus vector u must lie in
x-y plane. Let φ be the angle of rotation from positive orientation of x-axis to
vector u, in a counter clockwise sense, then φ can uniquely represent the vector
u, as shown in Fig. 2. Function f and g thus become functions with only one
variable φ. If function f and g are continuous with respect to φ, the rotation
limits L(a) is a closed region in S3.

Fig. 2. Arrangement of local coordinate frame and the parameterization of vector u.

The rotation boundary, or the formulation of function f and g, can be ob-
tained using motion capture techniques, or using spherical polygons, which are
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used in our experiment. A spherical polygon can be set up by measuring a set
of key orientations on rotation boundary v1, v2, ..., vn, and connecting these
points on a unit sphere with great arcs to form a polygon as illustrated in Fig.
3. Any orientation out of the spherical polygon is invalid.

Fig. 3. A spherical polygon with five key orientations.

3.3 Constraint Checking

Given a unit quaternion q, we need to check if this quaternion satisfies the joint
constraint L(a). If it is out of the rotation limit, we need to clamp it back to the
boundary of the constraint. The procedure of constraint checking is described
as below.

1. Standardize q to get the corresponding standard unit quaternion qs =(√
1+k
2 ,u

√
1−k
2

)
.

2. Get the angle φ from positive x-axis to vector u, and calculate the corre-
sponding function value g(φ).

3. Check if k satisfies g(φ) ≤ k ≤ 1. If it does, stop checking; if it does not, go
on to the next step.

4. Set k = g(φ). Recompute qs =
(√

1+g(φ)
2 ,u

√
1−g(φ)

2

)
.

To speed up the calculation of g(u), we can discretize the x-y plane with
respect to φ. For each discretized angle φ, we pre-compute the corresponding
limit g(φ) and construct a look-up table. Thus when checking the validity of a
unit quaternion, after get the corresponding angle φ, we only need to check the
look-up table to see if this unit quaternion is valid. An example of the look-up
table is shown in Fig. 4.
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Fig. 4. A look-up table. The curve line from g(0) to g(360) is the value of function
g(φ), and the area above the line is the valid area. Note that g(0) = g(360).

4 Result

In our experiment, we constructed the constraint of a virtual human shoulder
joint using a spherical polygon with eight key boundary orientations. After each
time interval, a random unit quaternion was generated. We interpolated be-
tween unit quaternions using spherical linear interpolation, or slerp. For each
in-between unit quaternions, we checked it’s validity and clamped it to the limit
boundary if it was invalid, as shown in Fig. 5.

The results showed that parameterizing rotation with unit quaternion can
produce smooth and natural motion. Our method of rotation limit is effective
and efficient to constrain the motion inside the limit.

5 Conclusion

This paper describes a method to specify the constraint of a joint which is pa-
rameterized with a unit quaternion. By using this method, joint constraints can
be easily specified and the validity of an orientation can be effectively checked.
Our method can be used to construct complex and meaningful joint constrains
accurately, and hence can be used in all kinds of articulated characters.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. The results of joint constraint. The green line is the boundary of joint constraint,
and the purple line is the track of the joint rotation. Figure (a), (c), and (e) show the
joint rotation without constraint checking. In (c), the arm intersects the body. In (e),
the arm cuts the head. Figure (b), (d), and (f) show the joint rotation with constraint
checking.
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