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Abstract. Robust visual tracking has become an important topic in
the field of computer vision. The integration of cues such as color, edge
strength and motion has proved to be a promising approach to robust vi-
sual tracking in situations where no single cue is suitable. In this paper,
an algorithm is presented which integrates multiple cues in a proba-
bilistic manner. Specifically the likelihood of each cue is calculated and
weighted before Bayes’ rule is applied to obtain the resultant posterior.
This posterior is generally not well represented analytically, and is there-
fore represented as a set of weighted particles, which is updated at each
frame by a particle filter. This paper demonstrates how the combination
of multiple cue integration and particle filtering results in a robust track-
ing method. We also demonstrate how each cue’s weight can be adapted
on-line during the tracking procedure.

1 Introduction

In recent years there has been much interest in visual tracking. Its potential ap-
plications include intelligent robotics, video surveillance, image sequence anal-
ysis and human-computer interfaces [1]. However, developing a visual tracking
algorithm that is robust to a wide variety of conditions is still an open problem.

Part of this problem is the choice of what to track. Color trackers, for ex-
ample, are distracted from their target by other objects of similar color, while
edge-based trackers can be misled by clutter in the background. The combination
of multiple cues can achieve more reliable tracking than any one cue in isolation.
Birchfield [2], for example, uses intensity gradient and a color histogram of the
target for robust head tracking. This algorithm improves tracking robustness
and accuracy by utilizing the property of cue complementarity. The primary
limitation of such an integration strategy is that each cue has the same fixed
level of confidence associated with it. This means that each cue is assumed to
possess the same reliability in each frame of video.

Democratic integration, proposed by Triesch and von der Malsburg [3] fuses
multiple cues in an adaptive manner so that the contribution of each cue de-
pends on its estimated reliability in the current environment. Consequently such
an algorithm is robust with respect to a dynamically changing background. This
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approach is based on voting techniques in which each cue generates an indepen-
dent decision concerning the tracking before these decisions are integrated using
a weighted sum. Recently Spengler and Schiele [4] have extended this method
to multiple hypotheses tracking by integrating it with the Condensation [5]
algorithm. Their scheme, however, is nonadaptive. Due to the conflict arising
from the single-hypothesis property of democratic integration and the multiple
hypotheses generated by Condensation, the saliency maps recovered from each
independent cue are combined together with a fixed weighted sum. An appar-
ent drawback of this method is that the methodology employed for fusing the
different cues is ad hoc, depending upon manual tuning of the weights.

In the field of image segmentation, which shares many techniques with track-
ing, some methods based on Bayes’ rule and the Expectation Maximization (EM)
algorithm have been introduced to probabilistically combine cues based on their
estimated likelihood (e.g. [6, 7]). For probabilistic tracking with multiple cues,
most previous work focuses on incorporating reliability measures with dynamic
Bayes networks (DBNs); usually Gaussian Mixture Models (GMMs) are used to
represent the probability density distributions [8, 9]. The advantage of such an
approach is that the model can be updated tractably with the EM algorithm.
Toyama and Horvitz [10] also use a DBN modelling the probabilistic dependence
of multiple cues to weight the cues based on their inferred accuracies. In [11], Wu
et al. propose a novel learning method based on a factorial graphical model where
different shape and color distributions are adapted on-line in a co-inference way.

The method presented here uses a feedback loop to perform the integration
of cues in a manner similar to that used by democratic integration. Within
this loop, discordant cues are suppressed quickly while cues that have proved
to be reliable in the recent past are given more weight. In our experiments,
two statistical features are used, namely, color distribution density and edge
information.

Color information is an appealing feature for deformable object tracking due
to its robustness to spatial rotation, non-rigidity and partial occlusion [12–14].
The mean shift tracker in [12] is essentially a nonparametric density gradient
estimator in color histogram density space. Unlike this deterministic search, [13,
14] propose a probabilistic method using a color-based particle filter based on
mean shift density estimation. The color cue used by our algorithm is based on
this model.

Despite the robustness of the color cue, it does not contain any information
about the spatial adjacency of pixels in the object. To complement the color cue,
edge detection is adopted to describe shape information, which has proved to
be an effective feature in visual contour tracking [1, 5]. In this paper, these two
features are integrated to demonstrate the validity of the proposed algorithm.
In most applications, environmental changes do not affect both these visual
cues simultaneously. Thus dynamically adjusting their influence improves the
system’s performance. Details on implementing these cues are shown in Section
3.
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Tracking a deformable object in a high dimensional state space requires
tractable methods for inferring the posterior probability distributions. Parti-
cle filters, also known as bootstrap filters, sequential Monte Carlo methods or
Condensation [5, 15, 16], together with their variants [17, 18], have been exten-
sively studied and successfully applied to visual tracking. The tracking engine in
our tracking framework is a modified particle filter.

The outline of the paper is as follows. In Section 2 we review visual tracking
as probability propagation in more detail. Section 3 describes specific cues used
in our work. The probabilistic integration scheme of multiple cues is presented in
Section 4. We also present a method to incorporate reliability measurement and
discuss how to continuously update each cue’s weight in our probabilistic cue
integration in Section 4. Section 5 presents a method for target model updating.
Experiments on real video sequences are demonstrated in Section 6. Finally some
discussion is reported and the concluding remarks are drawn in Section 7.

2 Particle Filtering for Visual Tracking

In this section, we briefly present the probability propagation model for tracking,
and its dynamical model component. The observation model, which concerns
multiple cue integration, will be demonstrated in the following section.

2.1 Particle Filtering

With the first-order Markovian assumption p(xt|x1:t−1) = p(xt|xt−1), the prob-
lem of tracking can be formulated in the Bayesian filtering framework [15] as

p(xt|z1:t) ∝ L(zt|xt)
∫

p(xt|xt−1)p(xt−1|z1:t−1) dxt−1 (1)

where xt and zt are the state and observation vectors at time t, and x1:t−1 and
z1:t−1 their histories respectively. With Eq. (1) we can calculate the posterior
recursively with a particle filer, given the dynamical model p(xt|xt−1) and ob-
servation likelihood model L(zt|xt). Unlike linear prediction algorithms such as
the Kalman filter, no assumptions of Gaussian transition and observation noise
are made for the particle filter.

The key feature of the particle filter is that the posterior is approximately
represented by a set of particles, each particle including a state vector x and
an associated weight ω: {(x(i)

t , ω
(i)
t ), i = 1, ..., N}. The weights are normalized

such that
∑

i ω
(i)
t = 1. Suppose we could sample the particles from an auxiliary

density, i.e. x(i)
t ∼ f(xt|x(i)

t−1, z1:t). Then the new particle weights are set to

ω
(i)
t ∝ L(zt|x(i)

t )p(x(i)
t |x(i)

t−1)

f(x(i)
t |x(i)

t−1, z1:t)
. (2)

The last step is to re-sample the particles to ensure the efficiency of the evolution
[16]. The general particle filter algorithm is displayed in Fig. 1. Note that when
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1. Initialization:
For i = 1, ..., N , sample particles from the prior x

(i)
0 ∼ p(x0) and set t = 1.

2. Importance sampling step:
For i = 1, ..., N , sample x

(i)
t ∼ f(xt|x(i)

t−1, z1:t) and evaluate the weights
according to Eq. (2). Then normalize the weights.

3. Selection(re-sampling) step:
Re-sample to obtain N replacement particles according to the probabilities
ω

(i)
t . Set t = t + 1, go to step 2.

Fig. 1. The standard particle filter algorithm.

the proposed importance distribution is chosen as the distribution conditional on
the state at the previous discrete time, i.e., in Eq. (2), the importance function
becomes f(x(i)

t |x(i)
t−1, z1:t) = p(x(i)

t |x(i)
t−1), then the weighting equation reduces to

ω
(i)
t ∝ L(zt|x(i)

t ). This simplification produces a variant of a well known particle
filter in computer vision, Condensation [5].

2.2 State Space and the Dynamical Model

We want to track a patch of interest in the image plane. The patch can be an
upright ellipse or rectangle in shape and is parameterized by

x = {x, y, ẋ, ẏ, sx, sy, ṡx, ṡy} (3)

where x and y denote the centroid of the ellipse or rectangle, ẋ and ẏ the velocities
of the centroid, sx and sy the length of the half axes or sides and ṡx and ṡy the
velocities of sx and sy (see [13, 14]). We use a first order auto-regression (AR)
equation to model the dynamics. This has the form

xt = Axt−1 + Bvt (4)

where vt is a multivariate normal distribution and the matrices A defines the
deterministic component and B, the stochastic component. It is straightforward
to extend this model to second order if it is required to capture more complex
dynamical motions.

3 Individual Cue

While the particle filter is a powerful tool for robust tracking, its success depends
largely on the choice of appropriate features to track. In this paper, we use color
and shape information. Our choice of features is based on their feasibility for
robust visual tracking and their adaptability to our probabilistic framework. In
contrast to the implementation methods in [3, 4], we use these cues in a proba-
bilistic way so that they can be integrated into the particle filtering framework
more naturally.
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3.1 Color Cue

We follow the model presented in [13, 14] to encode the color information. In RGB
space, color histograms are calculated with m bins. In our experiments, 8×8×8
bins are sufficient to represent the color distribution for pixels with 8-bit color
depth in each channel. After obtaining the color histogram, with the mean shift
algorithm, we calculate the color distribution density φ(x) = {φ(u)(x)}u=1...m

at location x (for details, refer to [12]).
At frame t, the color model φt(x) whose corresponding state is x 1 will

be compared to the target color model φ0(x0) which is manually selected or
generated by an automatic detection algorithm.

The similarity is measured by the Bhattacharyya distance,

ρ[φt(x),φ0(x0)] =
m∑

u=1

√
φ

(u)
t (x0)φ

(u)
0 (x0), (5)

D[φt(x),φ0(x0)] =
√

1 − ρ[φt(x),φ0(x0)]. (6)

Note that both of these distributions are required to be normalized first. In the
tracking procedure, the estimate will be updated continuously.

As in [13, 14], the likelihood function with respect to the similarity distances
is modelled as a Gaussian distribution

Lcolor(zcolor,t|xt) ∝ exp
(−κD[φt(xt),φ0(x0)]2

)
. (7)

where κ is a constant determined by the Gaussian variance.

3.2 Shape Cue

To complement the color cue, which contains no information about shape, a
shape contour is included in our object model. Instead of using B-splines to
model a detailed contour, a parametric ellipse or rectangle is used as the shape
model. In our experiment, we use an ellipse to model the contour of the human
face. Therefore calculating the likelihood of the shape cue is based on an ellipse.

The likelihood of the ellipse is computed at a point p on the ellipse as fol-
lows [1, 5, 19]. A measurement line is constructed passing through the point p
and the centre of the ellipse. n sample points are generated at fixed intervals
along this line, centered about p. A Canny edge detector is then applied at each
sample point.

Under the assumption that the true edge point is normally distributed with
zero mean and variance σ2, and the clutter is a Poisson process with density λ,
the likelihood of the observation at a sample point is

Lshape(z
(l)
shape,t|xt) ∝ 1 +

1√
2πσh0λ

nl∑
j=1

exp
[
− (zj − x)2

2σ2

]
, (8)

1 For clarity, we denote the pixel location {x, y} by the corresponding state vector
x = {x, y, ...}.
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where h0 is the prior probability that no true contour edge is detected and zj is
the distance of the detected feature point from the ellipse. See [1, 20] for details.
If it is assumed that the likelihoods on each measurement line are statistically
independent, then the overall likelihood for m lines evenly spaced around the
ellipse is

Lshape(zshape,t|xt) =
m∏

l=1

Lshape(z
(l)
shape,t|xt). (9)

4 Integration of Multiple Cues into Particle Filtering

Under the assumption that the observation from each cue is statistically inde-
pendent, the entire likelihood given the state xt is written

L(zt|xt) = Lcolor(zcolor,t|xt) · Lshape(zshape,t|xt). (10)

To adapt to the reliability of each cue, the likelihood function is slightly ad-
justed [6]:

L(zt|xt) = [Lcolor(zcolor,t|xt)]α1 · [Lshape(zshape,t|xt)]α2 , (11)

where 0 ≤ α1, α2 ≤ 1 are defined as the reliability factors for color and shape
cues. The weights need not sum to unity as for democratic integration. If a cue
is completely unreliable then the weight αk for that cue should be set to zero so
that [L(zt|xt)]αk = 1 (k = 1, 2 in our case) which implies that the measurement
for that cue has no effect. Conversely if a cue is totally reliable then αk = 1. In
this paper, we take only color and shape cues into consideration; however, it is
straightforward to include extra cues into this framework.

The multi-cue likelihood Eq. (11) can be substituted into Eq. (2), and the re-
weighting step, to obtain a particle filter that includes information from multiple
cues. The weighting parameters can be fixed and determined by some prior
knowledge [4]. However, it is beneficial to introduce an on-line adaptation scheme
to weight the cues with a probabilistic technique. The following section shows
how to introduce an adaptation scheme within the particle filtering framework.

4.1 Adaptation of Cue Weights

The democratic integration [3] method includes a re-weighting scheme in which
each cue is associated with a score based on the error between the individual
cue’s saliency and the average saliency.

We extend this idea to the particle filtering framework. A score γk,t at frame
t (k = 1, 2 in our case) is computed for each cue, which measures how well it
agrees with the result. The detailed procedure to compute the score γk,t is as
follows. Suppose that the image observation changes slowly such that we can
predict γk,t from the previous γk,t−1 and αk,t−1. We compute the difference
between the tracking result obtained by that cue alone and the result obtained
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by fusing the likelihood from all cues. The measurement of the difference can
be an L2-norm distance between the centroids of the tracked regions. Note that
in this procedure, no additional heavy computation is required to calculate the
tracking result for each cue because the bottle-neck is the calculation of the
likelihood for each cue, which only needs to be computed once at each frame.

Denoting the L2-norm distance by Ēk,t for each cue at frame t, the scores
can be computed as

γk,t =
tanh(−aĒk,t + b) + 1

2
(12)

where a, b are pre-defined constants and tanh(·) is the hyperbolic tangent func-
tion2. In our experiments, a = 0.4 pixel−1 and b = 3.

The weights are then adapted according to a leaking integrator,

ξα̇k,t = γk,t − αk,t (13)

where ξ is a parameter which determines the changing rate of the weights [3, 7].
Different from our criterion determining the reliability of tracking, Shearer

et al. [21] measured the success of tracking based on the consistency of object
velocity, which can also be used in our framework.

5 Target Model Updating

In our work, both bottom-up and top-down methodologies are used. Because the
proposed color cue tracking is a top-down template matching approach and the
target we are interested in is time-varying, it is necessary to update the template
during the tracking procedure. After we track one frame successfully, we can
use the tracked region of this frame to update the target model. For parametric
models, e.g. GMMs, some work has been done on updating the model parameters
on-line [9]. For nonparametric models, as proposed in [13], we put more weight
on recent tracking results than on older tracking results by using a forgetting
parameter. The question then arises of how to decide whether we should believe
the current tracking result is reliable and use this result to update the target
model. The average likelihood before normalization over all particles, L̄, could
be a good criteria. The higher the average likelihood L̄, the more reliable the
current result is. Therefore we compare the average likelihood with a pre-defined
threshold and update the model only when L̄ is larger than the threshold. A
similar approach is used for model updates in [13].

The target model can be initialized with a detector algorithm (e.g., for face
tracking, a face detector can be used). Alternatively we can specify an image
patch as the target model in the first frame by hand.

2 In the field of neural networks, such functions are usually adopted as stimuli func-
tions.
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6 Evaluation

This section evaluates the performance of the proposed integration and adap-
tation algorithm. The performance of both single cue and multiple cues are
compared3.

Our experiments show that the tracking algorithm with multiple cues per-
forms much more robustly than those with a single cue. The tracking results are
presented in Fig. 2. In the experiments, the resolution of the image sequences is

Fig. 2. Tracking results with color cue alone (top), shape cue alone (middle) and mul-
tiple cue integration (bottom). From left to right, the corresponding frame number is
frame 17, 87, 116, 283 and 390 out of total 500 frames. At frame 87, the color based
particle filter is trapped in a false region when the subject’s face turns around, dras-
tically changing the target model. The color tracker fails for most of the remaining
frames. The color based mean shift tracker [12] fails at the same position. The single
shape cue based particle filter is distracted severely by the clutter at frame 17, 116,
283 and 390, as the window blind beside the head contains many edges. The multiple
cue particle filter, however, tracks the face accurately through the whole sequence.

128×96 and the frame rate is 10 fps. The human head is modelled as an upright
ellipse as discussed in Section 2.2. For the color cue, 8 × 8 × 8 bins are used
to represent the color histogram in the RGB space. For the shape cue, for each
ellipse, 25 equally spaced rays are used and σ = 6 pixels. Each line has 2σ + 1
observation locations. For particle filters in all the cases, the number of particles
is N = 100.

The sequence is set in a office environment with a cluttered background which
contains many clutter edges to distract the contour tracker. The color of the door
is very similar to the skin color, which can confuse the color tracker. Additionally,
the tracked subject turns her head around which creates sudden color changes
3 The tracking result described in this paper can be accessed at
http://www.cs.adelaide.edu.au/~vision/demo/.
The test image sequences (courtesy of Dr. Birchfield) are available at
http://robotics.stanford.edu/~birch/headtracker/seq/.
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of the visible side of her head. At many frames the face is totally invisible,
which can make color based tracking algorithm lose the target completely. In
the experiment, neither single cue can track the subject well. Our algorithm
succeeds because it monitors the saliency of each cue and updates its influence
on the result accordingly.

Fig. 3 depicts the evolution of the color and shape cue. We can see that at
some certain frames, the proposed integration scheme successfully suppresses the
cue which is unreliable for tracking.
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Fig. 3. The evolution of the cue weights for Bayesian multiple cues integration. At
frame 390, the shape cue is quite unliable (see Fig. 2) while the color cue works well, in
this figure a minimum appears for the shape cue curve, which shows it is suppressed.

7 Discussion and Conclusion

This paper has presented a probabilistic multi-cue integration framework for
robust visual object tracking. In contrast to democratic integration, each cue’s
likelihood and weight is calculated, and then Bayes’ rule is applied to obtain the
resulting posterior. This algorithm is well suited to incorporation into a particle
filter in the procedure of particle weighting. Also presented was a criterion to
measure the reliability associated with each cue such that each cue’s weight can
be adapted on-line during the tracking procedure. Experimental data show such
an adaptation scheme is effective.

Future work includes exploring new criteria to measure the reliability of each
cue and extending this framework to multiple object tracking. As the number
of cues increases, further work will also be required to minimize the number of
tuning parameters required.
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