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Abstract. This paper presents a novel approach for estimating the flow fields of
dynamic temporal textures whose motion differsradically from that of rigid bod-
ies. Our approach isbased on alocal flow probability distribution function at each
pixel using the STAR model and the data from a spatio-temporal neighborhood.
The peak of thisdensity function can be regarded as the estimated |ocal flow vec-
tor. Our complete algorithm exploits a two-stage process. The first stage of the
algorithm applies a simple tensor method to estimate the direction of the optical
flow at each pixel in the texture. In the second stage, the flow probability function
is used to perform a one-dimensional search along the flow direction to obtain
the magnitude. Performance analysis and experiments with real video sequences
show that our methods can successfully estimate flow fields.

1 Introduction

Our environment is full of motion. Dynamic phenomena, such as drifting clouds, flow-
ing rivers, and curling smoke help to make that natural world athing of beauty. Videos
containing these dynamic phenomena are called temporal textures. Temporal textures,
with two spatial dimensions and one tempora dimension, are also known as dynamic
textures. They consist of multiple two-dimensional frames that change over timeto give
the appearance of motion. Temporal textures can be hard to analyze because their non-
rigid nature makes image registration and geometry reconstruction difficult. Techniques
that can successfully analyze and estimate the motion of temporal textures will lead to
better algorithms for computer vision and image processing, and in particular, will assist
the synthetic generation of temporal textures [1-4] within a scene.

The problem of determining the optical flow, or image-plane velocity, for regular
objectsis awell-studied problem. Nevertheless, solving optical flow robustly for arbi-
trary fluids and temporal textures till remains as a challenging problem. In time series
analysis, there are some models that have shown potential to model the behavior of
temporal textures. The autoregressive(AR) model has been often used for predicting
the value of a state variable s at time ¢. The forecast is a linear combination of some
number, m, of previous values:

Se=A1s 1+ -+ ApSi—m + 1y (1)

wherethe A; arer x (s € R") matrix constants which characterize the sequence. The
term n; is drawn from a zero-mean noise distribution, typically taken to be Gaussian.
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This AR mode can be generalized to include a spatial neighborhood as well. The re-
sult is the spatio-temporal autoregressive model (STAR) which does prediction using a
linear combination of the values in a spatio-temporal neighborhood:

s(z,y,t) = Y Ais(z + Azi,y + Ayi,t + At;) + n(z,y,1) 2
i=1
where Az;, Ay; and At; specify the neighborhood structure of the model. The STAR
model only exploits first and second-order statistics, hence cannot model curved lines.
This paper presents new methods for optical flow determination based on these
models. The motivation for our methods come from our need for an accurate optical
flow determination method in our work on synthesis of temporal textures.

Related Work. Optical flow determination methods can be divided into several classes.
Differential methods assume the image intensity is a differentiable function and first or-
der approaches such as Newton-Raphson iterations can converge. The most widely used
of these differential methods is the Lucas-Kanade algorithm, explained in [5]. Phase-
based methods use the phase information in the frequency domain. Fleet and Jepson
[6] developed an algorithm to compute optical flow based on local phase information
in animage. Larsen, Conradsen, and Ersbgll came up with a phase-based method using
spatio-temporal Gabor filters, which they apply to meteorological imagesin[7]. A third
class of optical flow determination methodsis the class of tensor methods. Knutsson ex-
plainsin [8] how the three-dimensional structure of a scalar field can be represented by
atensor; for temporal textures, eigenanalysis of this tensor yieldsinformation about the
optical flow.

Several optical-flow determination methods have been developed specificaly to
work with temporal textures of fluids. Béréziat et al. in [9], Corpetti et al. in [10, 11]
both offer methods for generating optical flow vector fields based on the physical prop-
erties of fluid flow mechanics. These physically-based techniques work well for tex-
tures where 3D fluid properties are preserved or distortion due to perspective projection
is negligible. A scenario where these techniques have been applied successfully is es-
timating cloud motion from meteorological images for which an orthographic or weak
perspective camera model is sufficient. We do not exploit these physical propertiesin
our method because we deal with general cases where pixe intensities are not related
to volumetric properties and perspective distortion may be significant. For an excellent
survey of optica flow determination methods, see[12].

2 Local Flow Probability Distribution Functions

In this paper, we till assume that the brightness of a point is a constant over a short
period of time. However, a statistical approach for determining flow vectors should be
adopted instead since the relative positions of neighboring points change faster in a
temporal texture than on arigid body.

Based on the characteristics of temporal textures, we can build a stochastic motion
model. The flow vector at a pixel at a certain time can be considered as a random
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variable with a probability distribution function. This probability distribution function
at apixe (zs,ys) a acertaintime ¢ can be represented as,

Be, ot (Td,Ya), (Ta,ya) € Dy, )

where D, is the set of destination pixels ( which is often a neighborhood of pixel
(zs,ys) ) and Z(“’yd)eDs Gz, y..t(Ta,ya) = 1. We assume that pixels in a local
spatio-temporal region centered at (z s, ys,t) share the same probability distribution
function for their flow vectors. The flow vector at each pixe inthelocal spatio-temporal
region can be considered as arandom sample from the same distribution. Therefore, the
statistics of the flow vectors in the local region can be used as an approximation to
this distribution function. Once we have the estimation of the probability distribution
function, the flow vector at the center pixel (z s, ys) ismorelikely to be consistent with
avector with a high probability.

Recovering probability distribution functionsfor flow vectors becomes more achiev-
able than recovering accurate pixelwise flow vectors for each frame. The STAR model
appears to be very useful for estimating local distributions. Let us first look at EQ. (2)
more carefully. The coefficient A; indicates the degree of correlation between pixel
(z,y) attimet and pixd (x + Ax;,y + Ay;) atimet + At;. When acausal neighbor-
hood is assumed, intuitively, A; is proportional to the probability of the fluid at pixel
(x + Ax;,y + Ay;) actually ending up at pixel (z,y) after atimeinterval — At ;. How-
ever, if we consider pixel (z,y) asthe source of flow instead of destination and assume
At; > 0 for al i, the STAR model still has legitimate physical interpretation where A ;
is proportional to the probability of the event that the fluid at pixel (z + Az ;,y + Ay;)
actually comes from pixe (z,y).

To estimate the probability distribution function at pixel (z s, ys), we need to have an
estimation of the probability that thefluid at pixd (x5, ys) goesto pixel (zs+ Ax;, ys+
Ay;) at the next frame, which means A¢; = 1, for al i. In Eq. (2), s(z,y,t) can be
either state variables or appearance variables. Since we keep the brightness constancy
assumption, s(z,y,t) can actualy be replaced by image pixd intensity. Taking the
expectation of the both sides of Eq. (2) and setting At; = 1, we have

i=1
where A; becomes exactly the probability that theintensity at pixel (z + Az, y + Ay;)
in the next frame equals the intensity at pixel (x, y) in the current frame. Therefore,

Guyyo t(Ts + Azi,ys + Ays) = A; )

where (z; + Ax;,ys + Ay;) € Dg. The expectation in (4) is taken with respect to
camera noise as well as the collection of pixelsin a spatio-temporal neighborhood of
pixel (z,y,t).

Since what we need to estimate is a distribution function with multiple parameters,
the amount of data available from asingle pixel (z s, y5) is obviously not sufficient. As
mentioned previously, the same distribution function is used for describing the statis-
tical behavior of all pixelsin a spatio-temporal neighborhood N ; of (z,ys,t), which
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means we can have an equation similar to Eq. (4) for every pixel in N ;. Thisisalinear
equation in the set of distribution coefficients and we assume a Gaussian noise source
at every pixel. The distribution coefficients can be solved using the following system of
normal equations for least-squares when the number of pixelsin IV ; islarger than the
number of pixelsin D.

RA =B (6)

where R isasymmetricm x m matrix with R;; = R;; = E(wvw)eNs Iz + Az, y+
Ay, t + DI(x + Azj,y + Ay;,t + 1), A is the coefficient vector, and B is a vector
with B; = E(z7y7t)eNs I(x + Az, y + Ayt + D)I(z,y,t).

Although the STAR model is linear and inappropriate for global curved flow struc-
tures, it can dtill effectively model all local flows very well since even curved flow
structures have a first-order local approximation. The least-squares estimation does not
guarantee that ), A; = 1 which is a necessary condition for a distribution function.
Thus, Eg. (5) should be adapted to

A;

T ™

¢zs,ys,t('75s + Aw,ys + Ay;) =

21 Analysis

Fig. 1. A step edge moving at a constant velocity v to the right. The image intensity is I, to its
left, and Iy to itsright. A local marginal flow distribution function is defined on a 1D interval
[do, d1], and N isthe spatio-temporal neighborhood for |east-squares estimation.

Once we have obtained the coefficients in a local flow distribution function, it is
natural to consider the true flow vector to be the vector with the maximum value from
the distribution function. This corresponds to the maximum likelihood estimation. Let
us verify how accurate this estimation is going to be for some simple situations.

Suppose there is a step edge moving at a constant integer velocity, v, across an
image from left to right as shown in Fig. 1, and the pixel (z s, y5) isright on the edge at
time¢. A simplen x n x 1 spatio-temporal neighborhood IV ; iscentered at (x5, ys, t)-
Because of the aperture problem, we are only able to estimate the normal velocity in
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the direction perpendicular to the edge. Therefore, only a marginal flow distribution
function defined on aone-dimensional window D ; = [dy, d;], wheredy, < v < dj, can
be recovered. Without loss of generality, the intensity to the left of the edge is assumed
to be I;, and to theright I, with I; > I,. Then, in Eq. (6),

Rij :Rji = (g"‘v_i) nIiz_'_(i_j)nIOIl_'_ (g _U_'_j) nIg’

B; = I+ (v —inlol + (2 —v +i)2nI§, if i <w;
(2 +v—i)nl + (i —v)Iol; + %13, otherwise.

After matrix simplifications, it can be shown that {4, = 1; A, = 0,i # v} isthe
unique solution in this case. Therefore, our adapted STAR model can give an accurate
optical flow for amoving step edge. Since the solution vector A resemblesad function,
it is more robust than an estimation from normalized correlation. Note that R, becomes
singular when Iy = I;, which means there is no edge feature in the image any more.
We can use this property to detect whether there are sufficient features available.

A more general situation involves a 2D gray-scale pattern moving at a constant
velocity, v = (v,,v,). Based on the observation that a general 3D spatio-temporal
neighborhood centered at (x5 + vy, ys + vy, t + 1) isthe same as the 3D neighborhood
centered at (x5, ys,t), we can conclude that the vector B in Eq. (6) coincides with the
Jj-th column of matrix R where Az ; = v, and Ay; = v,. When R is nonsingular, it
is straightforward to verify that {A; = 1; A; = 0,¢ # j} is still the unique solution,
and our method can still return the correct estimation. Obviously, this solution process
introduces an internal competition mechanism to let the 'winner’ take all. Theoretical
analysis for a general situation with nonrigid motion and noiseis left for further inves-
tigation. In practice, our method has performed well on temporal textures.

2.2 Pruning

Since the motion of temporal textures is largely random and noisy, the flow distribu-
tion function needs to be overdetermined during |least-squares data fitting. Thisis not a
severe problem since D is two-dimensional and IV, is three-dimensional in general.
However, pruning can definitely further improve the results. For flow distribution func-
tions, pruning means setting some of their insignificant coefficients to zero before solv-
ing the rest of the coefficients. Because of the reduced number of nonzero coefficients,
they can be solved more robustly. In Section 3.2, we will consider one-dimensional
search as a special type of pruning.

3 A Two-Stage Method

This section explains the details of our two-stage flow determination method. We first
explain the tensor method for calculating optical flow. Then we discuss how we refine
the optical flow estimate from the tensor method to produce a more accurate measure-
ment of the flow vector at each pixd.
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3.1 Tensor Method

Instead of working directly with the color values from the texture, we compute the
luminance L(f,z,y) for each pixel. The gradient vector of the luminance function at

apixd isVL = (%, o, %) which points in the direction in which the function
changes most rapidly. In practice, we use series-designed first-order derivative filters
[12] to estimate the derivative of L along the f-, z-, and y-axes. We can construct a

symmetric 3x 3 tensor S by taking the outer product of the gradient vector with itself:

or\® (oLoL) (oL oL
(Bf) (Bf Bx) (Bfa )
OL O

This tensor is representative of the local structure of the gray value function. Once
we have computed the tensor’s value at a pixd, the next step is to calculate the three
eigenvalues |\ in| < [Amid| < [Amaz| @d corresponding eigenvectors e ,,in, €mid,
emae Of thetensor. Thisis equivalent to performing a principal component analysis on
the texture’s gray values. The eigenvector e ,,;,, corresponding to the eigenvalue A i,
of smallest magnitude will point along the direction in which the gray value function
changes least quickly. Therefore, this eigenvector € i = (€ming s €min, » €min, ) 1S
the estimated spatio-tempora velocity at the pixel. To convert this three-dimensional
VECtor e,,;, into atwo-dimensional optical flow estimate v ¢¢,, 50, We scale the spatial
components of the eigenvector by the inverse of the tempord component: v ¢epsor =

€ming Eming
€ming’ €ming )

3.2 One-Dimensional Search

Because it is based on spatio-temporal structures, the tensor method is excellent at de-
termining the appropriate direction for the optical flow vector. However, the estimate of
the magnitude of the optical flow is inaccurate when the method is applied to temporal
textures. After completing the tensor method cal cul ations described above, we have an
optica flow estimate viensor (f, 2, y) for agiven pixel. In order to refine this estimate,
we perform a one-dimensional search.

We apply the method in Section 2 with pruning to this one-dimensional search by
constraining the set of nonzero coefficients in the STAR model to the line determined
by the tensor method and setting all other coefficients to zero. Therefore, the previous
STAR model equation should only include the spatial neighbors, {(x + Az ;, y+ Ay;)},
that lie along the same line. Since we only consider afinite spatial neighborhood in the
local flow probability distribution function, in practice, only the set of pixels that lie
within the spatial neighborhood aswell as on the line can have nonzero coefficients. Af-
ter solving this small number of coefficients using least-squares, we find the pixel with
the highest weight, and estimate the optical flow to be the vector from pixel (f,z,y)
to that pixel. Thus, one-dimensional search can effectively reduce the number of un-
knowns and produce more robust results efficiently.
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Having found the best-matching pixels from the previous and next frame, we esti-
mate the optical flow to be the average of the forward and backward opticd flows we
have obtained from our search.

Fig. 2. Example frames from the fire, smoke, steam, and toilet sequences

4 Results

We have conducted experiments on multiple sequences of temporal textures. Most of
our input textures came from Martin Szummer's database of temporal texture samples
[13]. We used the firergb, smoke, steam, and toilet textures (see figure 2). The firergb
texture is a color texture with 100 frames that are 256 pixels wide and 256 pixels high.
The other sequences are grayscal e textures with framesthat are 170 pixelswideand 115
pixels high. The smoke sequence has 150 frames, the steam and toil et textures have 120
frames. All of these results were gathered on a computer with a 650 megahertz Athlon
processor and 256 megabytes of RAM.

We ran our optical flow determination code on each of the four sample textures to
estimate the flow vector at each pixel. For the sample textures, this took approximately
50 minutes for the steam and toilet sequences, 70 minutes for the smoke sequence, and
2 hours for the firergb sequence. Running time for the algorithm scales linearly with
the number of pixels in the texture until the texture becomes large enough that virtual
memory becomes an issue.

Figure 3 displays some of the results of our optical flow determination code for the
fire, smoke, steam, and toilet sequences. Most of the test image sequences themselves
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Fig. 3. Optical flow estimates from the (a) fire, (b) smoke, (c) steam, and (d) toilet sequences

provide strong visual cues about the flow directions, therefore, we can visually evaluate
the correctness of the results. In general, the optical flow estimates are consistent with
human observations.

We have aso conducted comparisons between the results from our algorithm and
those obtained from three of the previous optica flow algorithms, including Lucas and
Kanade's multi-scale algorithm [5], Fleet and Jepson’s phase method [6], and an im-
proved version of Quenot et.al.’s algorithm [14] whose origina version works very
well for fluidswith artificial particles. We have found that our method performed better
than al these algorithms. An example of the comparions is shown in Fig. 4 where a
sequence with a falling tidal wave serves as the input. We can see that our algorithm
generated much more accurate flow vectors at most of the pixel locations than Lucas
and Kanade's and Quenot et.al.’s. It also produced more accurate results than the phase
method [6] whose results are not visualized here.

5 Conclusions and Future Work

The optical flow determination methods we have presented here produce accurate esti-
mates for many input cases. For gaseous fluids like smoke and fire, the results are very
accurate. For liquids such aswater, the results are reasonable, but not as good. This may
be aresult of noise in the image due to the specularity of the water surface.
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Fig. 4. (a) A tidal wave sequence; (b) flow field from Lucas and Kanade's algorithm; (c) flow field
from Quenot et.al.’s algorithm; (d) flow field from our agorithm.

Another important fact to take into consideration is that input textures often consist
of afluid superimposed over a background, such as the smoke input texture. It would
be interesting to use the optical flow estimates for segmenting the foreground textures
from the background.

Our method has a number of uses. We have used it as part of an algorithm for tem-
poral texture synthesis, explained further in [15]. Figure 5 shows frames from a synthe-
sized smoke sequence. For textures with accurate optical flow estimates, our synthesis
method was able to produce realistic output textures. By incorporating optical flow in-
formation into our synthesis method, we are able to provide not only continuity of color
but also continuity of motion in the synthesized texture. This technique alows us to
preserve spatial and temporal coherence from an input texture in our synthesized tex-
ture.
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Fig. 5. Frames from a synthesized smoke sequence
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