
An Efficient Implementation of Max Tree with
Linked List and Hash Table

Xiaoqiang Huang, Mark Fisher, Dan Smith

School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
(xq.huang@uea.ac.uk, mhf@cmp.uea.ac.uk, djs@cmp,uea.ac.uk)

Abstract. The max tree is a multi-scale image representation based
in mathematical morphology which has been applied to image filtering,
segmentation, tracking and information retrieval. This paper considers
the problem of efficiently building max tree structures from images and
retrieving information from them. Our aim is to find an economical data
structure that provides fast direct access to the max tree nodes while
keeping the memory usage for the tree to a minimum. For this we com-
bine a linked list data structure which allows for dynamic allocation of
computer memory and flexible management of tree nodes together with
a hash table to give direct access to each tree node as the underlying
data structure. Experimental results confirm that using this approach
max tree image descriptions can be built in linear time O(n).

Indexing terms: max tree, tree based image representation, multi-scale
image decomposition.

1 Introduction

Although a rectangular array is the most intuitive way to represent and store dig-
ital image data this traditional representation has major drawbacks. For example
Salembier [7] identifies two problems with the pixel based image representation.
Firstly, its elementary unit, the pixel, provides extremely local information and
secondly, most of the time, algorithms working at the pixel level need to be very
simple because they have to deal with a very large number of pixels. These prob-
lems have motivated researchers to search for image representations more suited
to high level computer vision applications. Region based image representations
potentially offer attractive solutions to the problems encountered by pixel based
approaches and could be considered as a first level of abstraction with regard to
the raw information.

Two data structures supporting region based image representations have been
identified. One is the Region Adjacency Graph (RAG) and the other is the
Tree [10, 8, 3]. The RAG has two main drawbacks for practical applications,
firstly it just defines the image at one scale only and secondly the connectivity
between regions is not space invariant. Compared to the RAG, the Tree is a much
more flexible image representation approach, which provides for a scale hierarchy.
This means that one pixel does not have to be classified into one region at one

299

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

scale. Instead, one pixel could belong to different regions at different scales. This
important property allows an image to be viewed at different levels of detail.

A tree could be viewed as a collection of elements called nodes along with
a relation that establishes a hierarchical structure on the nodes. To provide a
universal definition for tree based image representations is not trivial due to
the diversity of the types of trees. However, all image trees should satisfy the
following graph theoretic fundamentals [10]:

1. A Tree is a directed acyclic graph and each vertex of the graph is called
node.
(a) There is only one node, called the root Nroot, to which no edges enter.
(b) All nodes except the root have exactly one entering edge.
(c) There are a number of nodes, called the leaf nodes Nleaf , to which no

edges leave.
(d) All nodes except the leaf nodes have at least one leaving edge.
(e) If there exists an edge leaving from node N1 to N2, node N1 is called the

father node of node N2 and node N2 is called the child node of node N1

(f) There is a unique path from the root node to each node.
2. A Tree is also a hierarchical data structure collecting possible regions of

pixels
(a) Each node Ni is associated with a region of support Ri.
(b) The region of support of the root Rroot is the entire image.
(c) ∀i, j, k, i �= j such that father(Ni) = father(Nj) = Nk ⇒ Ri ⊂

Rk, Rj ⊂ Rk, Ri

⋂
Rj = ∅.

Two similar tree based image descriptions satisfying the above criteria and
founded in mathematical morphology have been recently proposed. The max
tree proposed by Salembier et. al. [2, 10] is a multi-scale image representation
formed by considering a hierarchy of connected level-sets of pixels in an image.
The max tree can be regarded as an instance of the more generalised opening
tree [11] from L. Vincent. The sieve tree from Bangham et. al. [3] is also based
on a level-set image decomposition and shares the same topology as the max
tree structure but maps regions in a slightly different way. The implementation
issues addressed in this paper are equally applicable to both structures. Both
Salimbier and Bangham have achieved some success in applying the max tree
and sieve tree a number of classical computer vision problems including stereo
matching [6], image filtering, segmentation [3] and information retrieval [10, 4].

Three sub-problems need to be addressed before either ‘scale’ tree can be
successfully constructed:

1. Find all possible tree nodes from the original image
2. Create the father-child relationships (links) between each possible pair of

tree nodes
3. Create an efficient data structure to store information (region attributes) at

nodes in the scale tree.

300

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

The first sub-problem has been successfully addressed by a recursive flooding
algorithm [10]. The focus of this paper is on discussing issues related to the
second and third sub-problems. This work is motivated by the need to find a
data structure for implementing the scale tree that is efficient both in terms of
CPU execution time and computer memory usage. An efficient scale tree data
structure should allow for direct access and flexible manipulation of the tree
nodes. Here, the main contribution of this paper is in combining a linked list
(for dynamic allocation of computer memory and flexible management of nodes)
with a hash table (for direct access to nodes) as the underlying data structure
to accommodate the scale tree.

The rest of this paper is organised as follows. The second section explains
how the linked list and the hash table are used in detail. In the third section
we discuss the important issues regarding the evaluation of scale tree image
descriptions and present some experimental results which confirm the algorithm
we propose operates efficiently in space and time. Finally conclusion are drawn
and some suggestion for further work are made

2 Proposed Data Structure for the Max Tree

2.1 Requirements for efficient hierarchical storage of image data

A suitable data structure for the scale tree should meet the following three
criteria:

1. The size of the data structure should be expansible.
2. The time cost of creating an new empty node should be constant.
3. All tree nodes should be accessible directly.

In considering these criteria we need to emphasise that building the scale tree
is not our primary objective and once available the image description will be used
to address problems in the fields of image processing and computer vision. Direct
access to the pixel data stored in the tree and the flexible manipulation of tree
nodes (e. g. to reconstruct the image at the required scale) are very important.

2.2 Linked List VS Array

Many classical data structures such as the queue, stack and table may be imple-
mented either as an array or a linked list. The array and the linked list are two
basic ways of allocating computer memory that could be used by a program.
The array is normally used when the data type and the number of elements
is known before the memory is allocated while the linked list is normally used
when the number of elements is unknown and the computer memory needs to be
dynamically allocated at run time. The size of the scale tree (number of nodes) is
image dependent and unknown until the tree has been built. For this reason the
linked list seems a better option than the array as the underlying data structure
for the scale tree.

301

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

Inherently, the nodes in a linked list must be accessed serially so the complex-
ity of visiting a random node in a linked list is O(N). In contrast, the complexity
of visiting a random element in an array is O(1). This probably explains why
the array is adopted as the underlying data structure in recent implementations
of the max tree [9] and sieve tree [5]. This approach is not memory efficient and
in most cases the scale tree requires far more memory than it actually needs.
Another disadvantage of using the array is that when an element is deleted,
maintaining the structure becomes cumbersome. The linked list does not have
this problem as all one needs to do is to remove the unwanted element from the
linked list and link its preceding and successive elements together. Therefore,
the linked list provides more flexible and economical way of deleting (managing)
tree nodes.

To summarise, the linked list provides dynamic allocation, efficient use of
memory and flexible management of tree nodes while the array provides direct
and fast access to a memory unit. Using a hash table within the data structure
for the scale tree leads to a more efficient implementation which combines the
advantages of the linked list and the array. It is well known that hash table is
prone to becoming inefficient when there is a need for re-hashing of the table.
Fortunately, in our implementation of the max tree, there is no need for re-
hashing as the size of the hash table is pre-known before the hash table is created.

2.3 Elements Stored in a Max Tree Node

Once the underlying data structure of the scale tree has been decided, one needs
to consider what information should be stored at a tree node. A minimal set of
attributes should include

1. ID: node identification number
2. father’s ID
3. a list of children IDs
4. a list of pixel coordinates
5. area: number of pixels belonging to a node

Obviously, each node in a tree needs a unique identification number. As a
tree is a hierarchical data structure, each node is linked to its father and children
nodes. The area attribute records the total number of pixels belonging to a node
(i.e. the size of a granule or region). A node would also need to store information
of pixels belonging to its support region so that an image could be reconstructed
from a tree. Note that the list of children’s ID and the list of pixel coordinates
are also implemented by a linked list.

2.4 Technical Details for Creating the Max Tree

Salembier [2]has proposed a very efficient way of finding scale tree nodes using a
recursive flooding algorithm. The flooding algorithm begins at the root node of
the tree (this is, the lowest gray value of the image) and recursively constructs

302

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

each of the branches of the tree. They use hierarchical first-in-first-out queues
of NG levels, with NG the possible number of gray levels (usually NG = 255).
These queues are used to define the scanning and processing order of pixels
comprising the image. An array STATUS of the same size as the image is used
to determine to which node a pixel belongs to. A pixel p with gray-level h belongs
to the node Ck

h if STATUS[p] = k. Initially, all elements in STATUS are set to
NOTPROCESSED(< 0). One array of G integers called Number−Nodes(h)
is used to store the number of max tree nodes detected so far at each gray level
h. The values of Number-Nodes is updated whenever new nodes are created at
gray-level h. A further array of G Boolean Node− at−Level(h) stores at which
levels below the current gray-level nodes have been detected in the path from
current node to the root.

A node in a max tree could be uniquely presented by Ck
h . For instance, a

node presented by C3
20 means this node’s gray value is 20 and it is the third

node found in the level of 20 during the recursive flooding algorithm. Note that
a node Ck

h corresponds to a connected component P k
h . However, Ck

h contains only
those pixels in P k

h which have gray-level h for the purpose of memory efficiency.
The hash table of the max tree is created in the end of the recursive flooding
algorithm. The key for an element in the hash table relating a node in the max
tree would be {h, k}.

Our implementation of the max tree starts with applying the recursive flood-
ing algorithm to recover scale tree nodes from the original image. Each flooding
operation recovers a new node (and associated image pixels) and a father-child
relationship between two nodes. These nodes are all appended to a linked list
but due to the complexity (O(n)) of visiting elements in a linked list we do not
visit tree nodes to establish relationships in this stage. Instead, a temporary
linked list TempL is created to store the information about the relationships
and when the whole recursive flooding algorithm is finished, a hash table is cre-
ated to index the linked list representing nodes of the created max tree. With
the help of the hash table, the complexity of visiting a random scale tree node
now becomes O(1) (although the tree is still stored in the linked list). Finally,
the information stored in the linked list TempL is eventually retrieved and the
father-child relationships are added as attributes at the scale tree nodes. The
complexity of the whole process is O(n).

3 Experiments

In this section we evaluate the scale tree building algorithm and demonstrate
that with the help of the use of a hash table, the efficiency of the algorithm is
significantly improved.

Our experiments are based on the max tree implementation defined by pseudo
code in [10] but the approach is equally applicable to the sieve tree variant pro-
posed by Bangham [3]. The algorithm is implemented in C++ by the Microsoft
Visual C++ IDE (version 6). The specification of the computer in which all

303

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

experiments are carried out is as follows: OS: Windows 2000, CPU: Pentium
1.7GHZ, Memory: DDR 1.0G Bytes.

It is common to evaluate a tree construction algorithm against image size [10].
However, we think this evaluation method is not fair. We believe that the com-
plexity of the image content is a more important factor than the size of the image
in the evaluation. If an evaluation of a tree construction algorithm against im-
age size is not avoidable, it is much fairer to choose test images of different size
but of the same image complexity. The term of ‘image complexity’ is defined as
follows:

image complexity =
total number of flat zones

image size
(1)

We test our algorithm using three groups of gray level images. The first
group of images, shown in figure 1, is chosen randomly from the COIL-100 image
data set from columbia university image library (http://www.cs.columbia.edu/).
These images have the same size (128 × 128) and background but represent
different foreground objects. The test results (see figure 2) using the first image
group show that for our implementation the time taken to build a max tree is
slightly dependent on the image complexity. They also show that when the image
size is small, using a hash table would increase the execution time because the
time taken to build the hash table is more significant than the computing gain
achieved by using it. However, the following two experiments show that when
the image size is larger or the scale tree is more complex, using the hash table
achieves a gain in overall performance.

(a) 1

(b) 2

(c) 3

(d) 4

(e) 5

(f) 6

(g) 7

(h) 8

(i) 9

(j) 10

(k) 11

(l) 12

Fig. 1. The first group of test images (128 × 128)

304

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

Fig. 2. Test results using images from figure 1

The second image group is shown in figure 3. These image are of different
size but of the same image complexity. The test results are shown in figure 4.
Figure 4 shows that the complexity of our implementation of the max tree using
a hash table is linear with respect to image size provided the test images have
the same image complexity. However, the implementation of max tree by linked
list without the use of a hash table does not work in linear time.

The third image group, shown in figure 5 comprises a typical image at dif-
ferent resolutions. Here, image 5 in figure 5 is the original image and the others
are the resized versions of it. Figure 6 shows that even for this group of images
our max tree implementation of also works linearly.

4 Conclusion and Further Work

An efficient data structure for the max tree is proposed in this paper. This data
structure is based on the use of a linked list along with a hash table. The linked
list provides dynamic allocation of the memory ensuring that the data structure
for the tree is memory efficient. This method outperforms the previously pub-
lished approach using an array [9]. The hash table provides direct access to a tree
node so that a node could be reached without visiting its preceding nodes first.
The use of hash table turns the complexity of visiting an element in a linked list
from O(n) to O(1) so that the time cost of building the max tree and applying
the max tree to solve real tasks is linear with repect to image size.

The performance of this new implementation of the max tree by linked list
and hash table is not fully analysed. Current performance analysis is focused
on the computer execution time. Our further work will include a more detailed
analysis of memory usage. Additionally, we hope to extend the approach to

305

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

(a)
image
1: 128
× 128

(b) image 2: 128 ×
256

(c) image
3: 256 ×
256

(d) image 4: 256 × 512

(e) image 5: 512 × 512

Fig. 3. The second group of test images

produce efficient implementations of other scale tree structures, e.g. the Inclusion
Tree [8] and Critical Lake Tree [1].

References

1. J. Cichosz, F. Meyer: Morphological multiscale image segmentation. Proceedings of
Workshop of Image Analysis for Multimedia Interactive Services, (1997) 161–166

2. P. Salembier, A. Oliveras, L. Garrido: Anti-extensive connected operators for image
and sequence processing. IEEE Transactions on Image Processing, No. 4, Vol. 7,
(1998) 555–570

3. J. A. Bangham, J. R. Hidalgo, R. Harvey, G. Cawley: The segmentation of images
via scale-space trees. Proceedings of the Ninth British Machine Vision Conference,
(1998) 33–43

4. J. A. Bangham, K. Moravec, R. Harvey, M. Fisher: Scale-space trees and appli-
cations as filters, for stereo vision and image retrieval. Proceedings of the Tenth
British Machine Vision Conference, (1999) 113-122

306

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

Fig. 4. Test results using images from figure 3

5. Javier Ruiz Hidalgo: The representation of image using scale trees. Master theis,
School of Information Systems, University of East Anglia, Norwich, Norfolk, United
Kingdom”, October, 1999

6. K.Moravec, R.Harvey, J.A.Bangham: Scale trees for stereo vision. Proceedings of
IEE on Visual Image Signal Processing, No. 4, Vol 147, (2000), 363–370

7. Philippe Salembier, Luis Garrido: Binary partition tree as an efficent representation
for image processing, segmentation, and information retrieval. IEEE Transactions
on Image Processing, No. 4, Vol. 9, (2000) 561–576

8. Pascal Monasse, Frédéric Guichard: Scale-space from a level lines tree. Journal of
Visual Communication and Image Representation, No. 2, Vol. 11, (2000) 224–236

9. A. Meijster, M. Wilkinson: A comparison of algorithms for connected set openings
and closings. IEEE Transactions on Pattern Analysis and Machine Intelligence, No.
4, Vol. 24, (2002) 484–494

10. Luis Garrido Ostermann: Hierarchical region based processing of image and video
sequences: application to filtering, segmentation and information retrieval. PhD the-
sis, Department of Signal Theory and Communications, Universitat Politecnica de
Catalunya, Barcelona, Spain, 2002

11. L. Vincent: Fast grayscale granulometry algorithms. In Proceedings of the Inter-
national Symposium on Mathematical Morphology and its Applications to Image
Processing, (1994) 265-272

307

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

(a) image 1:
(40 × 32)

(b) image 2:
(80 × 64)

(c) image 3:
(160 × 128)

(d) image 4:
(320 × 256)

(e) image 5: (640 × 512)

Fig. 5. The third group of test images

Fig. 6. Test results using images from figure 5

308

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

