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Abstract. Shape-from-Texture is the problem of estimating an object’s
shape by examining the apparent distortions in the surface texture of the
object due to image capture. A new method is described for estimating
the tilt angle of local surface patches, based on an analysis of the spectral
inertia. The effectiveness of the method is demonstrated on synthetic
images generated using the Brodatz textures, as well as a real image.

1 Introduction

Texture is an important visual cue to the perception of object shape. Three
dimensional shape estimation is made possible if we have some a priori knowledge
about the true surface texture. For example, Figure 1 shows a planewave covered
in a texture. If it is known that the texture is homogeneous, a human can easily
perceive the object’s shape. Attempts to automate this process have been an
active area of research in recent years. This problem is known as “Shape-from-
Texture” and is currently unsolved.

The next section of this paper will describe the relevant work that has taken
place in the area of Shape-from-Texture. A new method for estimating tilt of
surface normals is then described in detail. Experimental results from tests with
synthetic images and a real image are then presented.

Fig. 1. A texture-covered planewave. Discrepancies between the known true texture
and the texture captured in the image can lead to shape estimation.
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2 Previous Work

Gibson first suggested in 1950 that the human perception of 3-dimensionality
is influenced by texture gradients [8]. Since then, a plethora of computational
methods have emerged which estimate shape using texture cues. Many of the ear-
lier methods are feature-based, which involve detecting features such as texture
elements (texels), edges, or line segments. Shape is then estimated by analysing
properties of those features, such as their density gradient, area, size and de-
parture from isotropy. Examples of this kind include the work of Stevens [19],
Kender [12], Witkin [22], Ikeuchi [9], Aloimonos and Swain [1], Blostein and
Ahuja [3] and Kanatani and Chou [11]. A number of disadvantages arise in
the feature-based approach: decision making is often required in the feature-
detection stage, where often some threshold is used. This can lead to inaccura-
cies which affect shape estimation. Also, these methods do not utilise the full
information available in the image; they only use information contained in the
detected features.

In more recent years, there has been a shift toward Shape-from-Texture meth-
ods which utilise spectral information. These methods compare the spectral rep-
resentation of windowed image patches to recover orientation. Commonly used
spectral representations are the Fourier transform, wavelet decomposition and
Gabor transform. An advantage of the spectral approach is that it avoids the
feature detection step. Also, windowing issues are made simple; a slight shift
in the windowing function affects the image domain, but only affects the phase
part of the spectral representation. Often, the phase information is discarded
and only the amplitude information used.

The first work using a spectral approach was by Bajcsy and Lieberman [2],
who used the Fourier power spectrum. They estimated the transformation be-
tween a pair of spectra using the location of peaks in each representation.
G̊arding [7] and Super and Bovik [21] did this estimation using moments. Brown
and Shvaytser [5] assumed an isotropic texture and used the autocorrelation
function. Krumm and Shafer [13] modeled the transformation between a pair
of spectra as an affine transformation, and searched every combination of slant
and tilt in a discrete set to estimate the orientation. Malik and Rosenholtz [16]
proposed a method to solve for the affine transformation directly. Clerc and Mal-
lat [6] used wavelets rather than the Fourier transform. Ribeiro et al. [18] report
a method to recover the slant and tilt using the eigenvectors of the affine distor-
tion matrices. Other spectral-based methods include that of Jau and Chin [10],
who used the Wigner distribution, and Plantier et al. [17] who used a wavelet
decomposition of the image. Methods which use an adaptive scale have been
developed by Stone and Isard [20] and Lee and Kuo [14].

3 Surface Normal Calculation Using Spectral Inertia

A new method has been developed to calculate the tilt τ of the surface normal
for local surface patches. This method works with homogeneous textures rather
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Fig. 2. Principle for using spectral inertia. The image is contracted in the direction τ
by a factor of k. In the Fourier image, each point increases its distance from the α2
axis by a factor of k. Since r1 and r3 are unaffected, this results in no change in the
inertia about the α1 axis.

than only isotropic textures, allowing its application to many real world images.
The method is based on the fact that when an image is contracted in a direction
τ , the resulting change in the amplitude spectrum of the Fourier transform is a
stretch in that same direction.

Figure 2 shows the basic principle that when an image is contracted in some
direction τ , each point in the Fourier image1 moves in the direction τ , so that
in theory there is no change in the inertia about the axis in that direction. In
an ideal situation, the tilt angle could be easily estimated as such: obtain the
Fourier images of the original and contracted images, and calculate the inertia,
I, about every axis. This is done via the formula

I(θ) =
1
2
(c + a) − 1

2
(a − c) cos(2θ) − 1

2
b sin(2θ) (1)

where θ is the angle of the axis and a, b and c are the second moments, given by

a =
∑

u

∑
v u2F (u, v)2,

b = 2
∑

u

∑
v uvF (u, v)2,

c =
∑

u

∑
v v2F (u, v)2,

(2)

1 From here onward, the term ‘Fourier image’ will actually refer to the amplitude
spectrum of the Fourier image.
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Fig. 3. In (a) we see a texture windowed with a Gaussian. The image in (a) was
contracted by a factor of 2 in the direction 90◦ to produce the image shown in (b).
The scaling property applies to the (a)-(b) pair. In (c) the texture has been contracted,
but the window used is the same Gaussian as was used in (a). The scaling property is
countered by using the same Gaussian in the (a)-(c) pair.

where u and v are the frequencies in the x and y directions respectively and F is
the amplitude of points in the Fourier image. The tilt angle is simply the angle
for which the inertia of the two Fourier images is equal.

In practice, there are factors which affect the behaviour described above.
These include windowing issues and scaling of the Fourier transform when it is
stretched; if F(f(x)) = F (ω) is the Fourier transform of function f(x), then
F(f(kx)) = 1

kF (ω
k ). In plain English, if the Fourier transform is stretched out

by a factor k, the magnitudes decrease by k.
This scaling action can be cancelled out by the windowing process chosen;

consider the image of a texture windowed with a Gaussian shown in Figure 3 (a).
This windowed image was contracted by a factor of 2 in the direction 90◦ to give
the image shown in (b). When comparing the Fourier transform of (b) to that of
(a), the corresponding peaks increase their distance from the 0◦ axis by a factor
of 2. The scaling property tells us that these peaks also decrease in magnitude
by a factor of 2. In figure 3 (c), we see the case where the texture has been
contracted by a factor of 2 in the direction 90◦, but the window used is the
same Gaussian as was used in (a). The Fourier transforms of (b) and (c) will be
similar, except the magnitudes for (b) will be 2 times larger than for (c) because
twice as much of the contracted texture is visible in the windowed region. Thus,
if we compare the Fourier transforms of (a) and (c), a shift in peaks will still
occur, but the scaling action will not.

Figure 4 demonstrates the method proposed so far. A planewave texture
windowed with a Gaussian is shown in (a). In Figure (b) we see the texture
when it has been contracted by a factor of 1.6 in the direction of 50◦. The
corresponding Fourier transforms are shown in (c) and (d) respectively.

The inertia of the two Fourier transforms as a function of angle of axis are
shown in Figure 5, denoted I1 and I2. The dashed line depicts the true tilt angle
of 50◦. The intersection of the two inertia lies on the required 50◦ line2.

2 Note that intersections can also occur at other angles. A detailed explanation of
these ‘false’ intersections is not given due to lack of space. Suffice to say, however
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Fig. 4. Planewaves and their Fourier images
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Fig. 5. Spectral inertia of the two planewaves. I1 corresponds to the original planewave
and I2 corresponds to the contracted planewave. The two curves intersect at the tilt
angle of 50◦, as required.

The texture shown in Figure 4 responds well to the method because it behaves
in a manner which is close to ideal. When using real images, however, the method
outlined so far does not perform well. Unwanted effects are added to the Fourier
transform via blurring and contrast differences. Blurring tends to draw the power
in the Fourier image closer to the origin. Contrast differences scale the inertia.

In light of the above, the method outlined so far for estimating tilt angle
requires modification when real images are input. What we seek to establish is
the axis about which the points in the Fourier transform tend to ‘congregate’
when the texture is contracted. This axis gives the tilt angle. Figure 6 depicts
the ‘congregating’ behaviour. An image of a texture taken from the Brodatz
database is shown in Figure 6 (a). Its Fourier image is shown in (b). The texture
was contracted by a factor of 2.5 in the direction of 40◦ to give the Fourier
transform shown in (c). In comparing (b) with (c), the peaks appear to gather
about the axis in the direction of 40◦, denoted by the black line.

The ‘congregation’ of points near the tilt axis tends to decrease the inertia
about that axis. In fact, when comparing the Fourier image of the original texture
with that of the compressed texture, the inertia will decrease by a maximal

that ‘false’ solutions do not occur if there are enough peaks in the Fourier image, as
is the case with almost all real textures.
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(a) Original texture (b) Fourier image (c) Fourier image
after contraction

Fig. 6. ‘Congregation’ of Fourier peaks. A Brodatz texture is shown in (a). The corre-
sponding log-Fourier image is shown in (b). When the texture is contracted by a factor
of 2.5 in the direction of 40◦, its log-Fourier transform appears as shown in (c). The
black line denotes the axis in the direction of 40◦.
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Fig. 7. Normalisation of inertia. Figure (a) gives a representation of spectral inertia in
the form of an ellipse. In (b), I1 is the spectral inertia of some frontal patch. I2 is the
spectral inertia of a sample patch. The dotted line is the angle where I2 is maximally
less than I1. The case where I2 has been normalised to I1 is shown in (c). The dotted
line now shows the correct tilt angle.

amount about the tilt axis. It is this tilt axis that we wish to identify, as it leads
us to a direct estimation of the tilt angle.

Suppose we are estimating the tilt angle in a sample patch of texture, and do
this by comparing it to a patch containing the frontal (true) texture. We wish to
find the axis about which the spectral inertia of the sample patch is maximally
less than the spectral inertia of the frontal patch. In order to be compared, the
two inertia must firstly be normalised to avoid the effects of blur and contrast
variations.

The spectral inertia may be represented by an ellipse with major diameter
M and minor diameter m, where M and m are the maximum and minimum
inertia respectively. This is depicted in Figure 7 (a).

In Figure 7 (b) we see two ellipses: I1 represents the spectral inertia of some
frontal patch and I2 represents the spectral inertia of a sample patch. The dotted
line shows the angle at which I2 is maximally less than I1. This dotted line
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inaccurately estimates the tilt axis, since normalisation has not been performed.
Normalisation, which is the process of matching the areas of the two ellipses as
described later, results in an accurate estimate of the tilt angle.

We are only interested in the general change in shape in order to give the
best guess of tilt angle. The size of the ellipses is unimportant and easily affected
by blur, lighting etc. I1 can be thought of as some unit inertia shape, multiplied
by some factor c1, where c1 is unpredictably affected by blur and contrast varia-
tions in the image. Similarly, I2 can be thought of as another unit inertia shape
multiplied by a different factor, c2. I2 can be normalised to I1 if it is scaled by
a factor c1

c2
. This is done by multiplying I2 by a factor

√
M1m1
M2m2

where M and m

are the maximum and minimum inertia respectively, and the subscripts denote
the inertia to which we refer. This process of scaling I2 equalises the area of the
two ellipses. Figure 7 (c) shows I2 after it has been normalised to I1. The tilt
angle is then correctly chosen as the angle where I2 is maximally less than I1.

In summary, the initial approach of estimating tilt angle using the intersec-
tion of the two inertia is only accurate if an ideal texture is used. The addition
of blur and contrast variations require that we analyse instead the change in the
shape of the inertia, and this can only be done in a normalised framework.

Currently, the algorithm works on images of surfaces displaying a frontal
point i.e. a point where the tangent surface is parallel to the image plane, and
therefore the true texture is displayed. An orthogonal camera model is employed,
which means that the algorithm is only valid for images captured in a small
visual angle. The algorithm for estimating the tilt of a curved surface, can be
summarised as follows:

1. Begin with an image of a uniformly-textured surface. Window the image into
local patches using a Gaussian window.

2. Identify a window displaying a frontal point on the surface. In this current
work, frontal points are found manually however we are developing a method
to automatically do this.

3. For each windowed patch, take the Fourier transform.
4. Calculate the spectral inertia as a function of angle for the local patch and

the frontal patch.

5. Multiply the inertia in the local patch by
√

M1m1
M2m2

, where M1 and m1 are
the maximum and minimum inertia in the frontal patch, and M2 and m2

are similar but refer to the local patch.
6. Identify the axis for which the inertia of the local patch is maximally less

than the inertia of the frontal patch. The angle of this axis is the estimated
tilt angle.

Much of the recent work in Shape-from-Texture focuses on solving the affine
transformation between pairs of spectra. Surface normals are then interpreted
from the transformation. In contrast, the method proposed in this work does not
solve a transformation, and instead estimates the tilt angle using a property of
that angle: under normalised conditions, the inertia about the tilt axis decreases
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by a maximal amount as the texture is slanted. There is no need to search over
any large search space. Since we are using the Fourier transform, no choice of
filter scale, spacing and number is required, however an appropriate window size
must be chosen.

A common difficulty in Shape-from-Texture is instability of the tilt angle
near the frontal position. At the frontal point itself tilt is undefined, and in
nearby areas tilt is difficult to calculate accurately. Under these conditions some
algorithms can yield complex values for tilt [15]. The method outlined in this
paper is guaranteed to yield a real (and hence usable) value for tilt, by choos-
ing a best guess from the range of real angles. Apart from the standard π shift
ambiguity3, some methods introduce additional ambiguities through the struc-
ture of their mathematical formulation [21]. This is not the case here. Complex
windowing issues in the spatial domain are made simple in the spectral domain,
where using the same Gaussian window over the entire image only results in a
scaling of spectral information. Also, no preprocessing step is required to remove
the lighting variations on the textured surface, as this is compensated for, along
with some amount of blurring, in the inertia normalisation step.

4 Results

The algorithm was tested on the images in the Brodatz texture collection [4].
The initial testing procedure involved comparing two images of the same texture:
the first image displaying the frontal texture, and the second image displaying
the contracted version.

The two images were obtained using the following steps: window the centre
portion of the texture image, using a Gaussian window. This gives the first
image. Contract the original texture image by a factor k in direction τ , where k
and τ are some initial test values. Window the center portion of this contracted
image with the same Gaussian to obtain the second image.

When the two images were input into the algorithm, the aim was to estimate
the angle τ . Then k and τ were varied to test the algorithm under different
multiplying factors and tilt angles.

Figure 8 (a) displays information relating to the example in Figure 6 (a
homogeneous but not isotropic texture), when the texture was contracted by a
factor of 1.6 in the direction of 40◦. The spectral inertia of the original image is
labeled I1, and the spectral inertia of the contracted image is labeled I2.

The normalised inertia is labeled I3. The difference between I3 and I1 is also
shown. In this case, I3 is maximally less than I1 at the angle 38◦, which closely
matches the tilt angle of 40◦, shown by the dashed line.

Figure 8 (b) displays the outcome of experiments with the same texture when
the angle of tilt, τ was varied. On average, the estimated tilt angle was 5.5◦ in

3 This ambiguity is demonstrated by the fact that under orthographic projection, it
is impossible to distinguish between a concave textured sphere and a convex one,
based on texture alone.
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Fig. 8. Result of tilt angle estimation. In (a), the angle of 40◦ is accurately estimated.
Tests over various angles are shown in (b).
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Fig. 9. An image of a golf ball is shown in (a). The corresponding needle diagram is
shown in (b). A plot of error versus slant for every image point is displayed in (c).

error, with the worst case not more than 11◦ in error. The algorithm was then
applied to the entire Brodatz database, giving similar results.

The algorithm was then tested on a real image. Figure 9 (a) shows the image
of a golf ball. The image was windowed into local patches, and the tilt angle
was estimated for each point on the surface. The slant angle was manually input
(after the tilt was calculated) in order to produce the full needle diagram as
shown in Figure 9 (b). The experiment yielded an average error in tilt angle of
12.5◦. It was found, as expected, that the highest errors came from areas near
the frontal point, as shown in Figure 9 (c).

5 Conclusion

In Shape-from-Texture the goal is often to estimate the slant and tilt of surface
normals of a textured surface. In this paper, an algorithm for estimating the
tilt angle has been described. It is based on an analysis of the change in shape
of the inertia curve, with respect to angle, when a texture is contracted. The
algorithm has been shown to work well on a real texture in the presence of blur
and lighting variations.
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