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Abstract. For many applied problems in the context of clustering via
mixture models, the estimates of the component means and covariance
matrices can be affected by observations that are atypical of the com-
ponents in the mixture model being fitted. In this paper, we consider
for Gaussian mixtures a robust estimation procedure using multireso-
lution kd-trees. The method provides a fast EM-based approach to the
fitting of Gaussian mixtures in applications to huge data sets. In addi-
tion, a robust estimation against outliers in fitting Gaussian mixtures is
achieved by giving reduced weight to observations that are atypical of a
component. The method is illustrated using real and simulated data.

1 Introduction

With a Gaussian mixture model approach to clustering, it is assumed that the
observed p-dimensional vectors x1, . . . ,xn are from a mixture of, say g, compo-
nents in some unknown proportions π1, . . . , πg that sum to one. That is, each
data point is taken to be a realization of the mixture probability density function,

f(x;Ψ ) =
g∑

i=1

πiφ(x;µi,Σi), (1)

where φ(x;µi,Σi) denotes the p-dimensional multivariate Gaussian distribution
with mean µi and covariance matrix Σi. Here the vector Ψ of unknown param-
eters consists of π1, . . . , πg−1, the elements of µi, and the distinct elements of
Σi (i = 1, . . . , g). The vector Ψ can be estimated by the maximum likelihood
method via the expectation-maximization (EM) algorithm [1].

Within the EM framework, each xj is conceptualized to have arisen from
one of the g components. We let z1, . . . ,zn denote the unobservable component-
indicator vectors, where the ith element zij of zj is taken to be one or zero
according as the jth data point xj does or does not come from the ith component.
We put z = (zT

1 , . . . ,zT
n )T where the superscript T denotes vector transpose. An

outright clustering of the data into g clusters can be obtained by assigning the
jth data point to the component to which it has the highest estimated posterior
probability of belonging [2, Section 1.15].

For many applied problems in the context of clustering via mixture models,
the estimates of the component means and covariance matrices can be affected
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by observations that are atypical of the components in the mixture model being
fitted. In this paper, we consider the use of multiresolution kd-trees (mrkd-
trees) to provide a robust approach to the fitting of Gaussian mixtures. With
the mrkd-tree approach, “close-by” observations are grouped into tree-nodes.
The method thus speeds up the implementation of the EM algorithm in the
fitting of Gaussian mixtures to huge low-dimensional data sets [3, 4]. Moreover,
observations that are atypical of a component are being given reduced weight
in the calculation of its parameters. The method thus also provides a robust
estimation against outliers in fitting Gaussian mixtures. Although the mrkd-
tree approach has been considered as an approximate method (see Section 2),
Ng and McLachlan [4] has shown that mrkd-tree-based algorithms can converge
to essentially the same maximum log likelihood value as the EM algorithm.

Gaussian mixtures are increasingly being adopted in applications in image
processing contexts, such as the segmentation of magnetic resonance (MR) im-
ages [5, 6]. A typical three-dimensional (3D) multispectral MR image consists of
low-dimensional (p ≤ 3) feature vectors of intensities measured on over ten mil-
lions voxels. Thus the aim of the proposed method is to provide a fast EM-based
mixture model approach to segment MR images and also a robust estimation of
image parameters against the intensity inhomogeneity due to acquisition equip-
ments.

The paper is organized as follows: Section 2 introduces a sparse, incremental
(SPIEM) mrkd-tree algorithm proposed by [4] to speed up the EM algorithm.
In Section 3, we consider a robust procedure which identifies tree-nodes as three
different types and gives different weights on them in the calculation of param-
eters. In Section 4, the performance of the proposed method is illustrated using
some simulated and real data. Section 5 ends the paper with some discussion.

2 A SPIEM mrkd-tree algorithm

The use of a mrkd-tree has been proposed by Moore [3] to speed up the EM
algorithm. Here kd stands for k-dimensional where, in our notation, k = p, the
dimension of a feature vector xj . The kd-tree is a binary tree that recursively
splits the whole set of data into regions. Each node in the kd-tree includes a
bounding box that specifies a subset of the data points and the root node owns
all the data. The children of a node are smaller bounding boxes, generated by
splitting along the parent node’s widest dimension. The mrkd-tree is constructed
top-down, starting from the root node and the splitting procedure continues until
the range of data points in the widest dimension of a descendant node is smaller
than some threshold γ. This node is then declared to be a leaf-node and is left
unsplit. In this paper, we take γ to be 0.3% of the range in the splitting dimension
of the whole data set [4].

For Gaussian mixtures, it is computationally advantageous to work in terms
of the sufficient statistics [7]. With the help of the multiresolution data structure
built up by the kd-tree, the computation of the current conditional expectations
of the sufficient statistics in the E-step can be restructured as follows on the
(k + 1)th scan of the EM algorithm. Let nL be the total number of leaf nodes.
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For the mth leaf node LNm (m = 1, . . . , nL), the conditional expectations of the
sufficient statistics are simplified by treating all the data points in it to have the
same posterior probabilities τi(x̄m;Ψ (k)) calculated at the mean, where

τi(x̄m;Ψ (k)) = π
(k)
i φ(x̄m;µ(k)

i ,Σ
(k)
i )/

g∑
l=1

π
(k)
l φ(x̄m;µ(k)

l ,Σ
(k)
l ) (i = 1, . . . , g)

and x̄m is the mean of data points belonging to the mth node. The contribution
of the mth leaf node LNm (m = 1, . . . , nL) to the conditional expectations of
the sufficient statistics is given as, for i = 1, . . . , g,

T
(k)
i1,m = τi(x̄m;Ψ (k))nm

T
(k)
i2,m = τi(x̄m;Ψ (k))nmx̄m

T
(k)
i3,m = τi(x̄m;Ψ (k))

∑
j∈LNm

xjx
T
j ,

where nm is the number of data points in the mth node (m = 1, . . . , nL). The
conditional expectations of the sufficient statistics are approximated as

T
(k)
i1 =

n∑
j=1

τ
(k)
ij ≈

nL∑
m=1

T
(k)
i1,m (2)

T
(k)
i2 =

n∑
j=1

τ
(k)
ij xj ≈

nL∑
m=1

T
(k)
i2,m (3)

T
(k)
i3 =

n∑
j=1

τ
(k)
ij xjx

T
j ≈

nL∑
m=1

T
(k)
i3,m, (4)

where τ
(k)
ij = E(Zij | x;Ψ (k)) is the current estimate of the posterior probability

that xj comes from the ith component (i = 1, . . . , g; j = 1, . . . , n).
The M-step updates the estimates as follows:

π
(k+1)
i = T

(k)
i1 /n, (5)

µ
(k+1)
i = T

(k)
i2 /T

(k)
i1 , (6)

Σ
(k+1)
i =

{
T

(k)
i3 − T

(k)−1

i1 T
(k)
i2 T

(k)T

i2

}
/T

(k)
i1 . (7)

It is noted that the calculation of the sufficient statistics in (2) to (4) is
approximate. In practice, the leaf nodes should be very small (or γ small) in
order that the simplified equations (2) to (4) be applicable. However, in this
situation, nL will be close to the number of data points n, and hence there is
very little computational gain over the standard EM algorithm.

Thus, a further (pruning) step is proposed to reduce the computational time
[3]. For each component i at a given node (i = 1, . . . , g), the minimum and
maximum values that any data point in the node can have for its current poste-
rior probabilities are computed. Denote these limiting values τi,min and τi,max,
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Fig. 1. The SPIEM–kd-tree algorithm. Partition of nodes at level L into blocks

respectively. If the differences between them for all i = 1, . . . , g are small and sat-
isfy a pruning criterion (see below), then the node is treated as if it is a (pseudo)
leaf node. Hence its descendants need not be searched at this scan and time
is saved. Let τi,total be the sum of posterior probabilities of the ith component
membership for all the data points. We prune the mth node if

1. nm(τi,max − τi,min) < 0.01τi,total ∀i = 1, . . . , g, and
2. log(

∑g
i=1 πiφi,max/

∑g
i=1 πiφi,min) < 0.5 | log

∑g
i=1 πiφ(x̄m;µi,Σi) |,

where φi,max and φi,min are the upper and lower bound on the ith component-
conditional density, respectively. For p ≤ 3, the limiting values of τi are obtained
using an analytical geometry approach. The idea is to transform the data points
by a matrix of normalized eigenvectors so that the covariance matrix becomes
an identity matrix and hence the Mahalanobis squared distance becomes the
Euclidean squared distance; see [4] for details.

In [4], a SPIEM mrkd-tree algorithm is proposed to speed up the EM algo-
rithm for fitting Gaussian mixtures. With this algorithm, the nodes at a prede-
termined level, say L, of the kd-tree are divided into B blocks and a “partial”
E-step is implemented by searching down from only a block of nodes at level
L at a time before the next M-step is performed (Fig. 1). Here the number of
blocks B is chosen based on the simple rule proposed in [7]. The argument for
improved convergence rate is that the algorithm exploits new information more
quickly rather than waiting for a complete scan of all nodes before parameters
are updated by an M-step. Moreover, component-posterior probabilities that are
below a specified threshold are held fixed while those for the remaining compo-
nents in the mixture are updated. Thus, instead of considering all g components,
it is possible to “freeze” those τi(x̄m;Ψ (k)) that are close to zero and save time.

To examine the SPIEM mrkd-tree algorithm more closely, let Am (m =
1, . . . , nPL) be a subset of {1, . . . , g} which component-posterior probability of
the mth pseudo-leaf node is close to zero, say less than 0.005, and hence is
held fixed [4]. Here nPL is the number of pseudo-leaf nodes at the current scan.
Let Ψ (k+b/B) denote the estimate of Ψ after the bth iteration on the (k + 1)th
scan (b = 1, . . . , B) and Sb+1 denote the subset of {1, . . . , nPL} containing
the subscripts of those pseudo-leaf nodes that belong to the (b + 1)th block
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(b = 0, . . . , B-1). Suppose that a set of Am is selected on the kth scan for m =
1, . . . , nPL. That is, on the (b+1)th iteration of the kth scan (b = 0, . . . , B-1), if
τi(x̄m;Ψ (k−1+b/B)) < 0.005 for m ∈ Sb+1, then Am contains the ith component;
otherwise Ac

m (the complement of Am) contains i. Now suppose that the SPIEM
step is to be implemented on the subsequent B iterations of the (k + 1)th scan.
Then on the (b + 1)th iteration (b = 0, . . . , B-1), consider for all m ∈ Sb+1,

– for all i ∈ Am, set τi(x̄m;Ψ (k+b/B)) = τi(x̄m;Ψ (k−1+b/B)),
– for all i ∈ Ac

m, calculate the “non-proper” posterior probabilities of compo-
nent membership, denoted as τ∗

i (x̄m;Ψ (k+b/B)), based on the current esti-
mates Ψ (k+b/B) and then update posterior probabilities τi(x̄m;Ψ (k+b/B)) by
rescaling τ∗

i (x̄m;Ψ (k+b/B)) as

τi(x̄m;Ψ (k+b/B)) =


 ∑

h∈Ac
m

τh(x̄m;Ψ (k−1+b/B))


 τ∗

i (x̄m;Ψ (k+b/B))∑
h∈Ac

m
τ∗
h(x̄m;Ψ (k+b/B))

.

This sparse version of the partial E-step thus will take time proportional only to
the number of components i ∈ Ac

m (m = 1, . . . , nPL). The current conditional
expectations of the sufficient statistics T

(k+ b/B)
i1 , T

(k+ b/B)
i2 , and T

(k+ b/B)
i3 are

obtained for i = 1, . . . , g, using the relationship

T
(k+ b/B)
iq = T

(k+ (b−1)/B)
iq − T

(k−1+ b/B)
iq,b+1 + T

(k+ b/B)
iq,b+1 (q = 1, 2, 3) (8)

for b = 0, . . . , B-1, where the first and the second terms on the right-hand side of
(8) are available from the previous iteration and previous scan, respectively. Only
the third term of (8) have to be calculated by updating only the contribution to
the sufficient statistics for those components i ∈ Ac

m. For example,

T
(k+b/B)
i1,b+1 =

∑
m∈Sb+1

IAm
(i)τi(x̄m;Ψ (k−1+b/B))nm

+
∑

m∈Sb+1

IAc
m

(i)τi(x̄m;Ψ (k+b/B))nm, (9)

where IAm
(i) is the indicator function for the set Am. The first term on the

right-hand side of (9) is calculated at the (b + 1)th iteration of the kth scan and
can be saved for use in the subsequent iteration on the (k + 1)th scan. Similar
arguments apply to T

(k+b/B)
i2 and T

(k+b/B)
i3 .

3 Robust estimation

Robust fitting of Gaussian mixtures has been considered, using M-estimates to
update the component estimates on the M-step of the EM algorithm [8, 9]. With
the M-estimation on mrkd-trees, the updated component means µ

(k+1)
i in (6)

are replaced by

µ
(k+1)
i ≈

∑nP L

m=1 τi(x̄m;Ψ (k))nmu
(k)
im x̄m∑nP L

m=1 τi(x̄m;Ψ (k))nmu
(k)
im

, (10)
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where u
(k)
im = ψ(∆(k)

im )/∆(k)
im , and where ∆

(k)
im = {(x̄m − µi)T Σ−1

i (x̄m − µi)}1/2

is the Mahalanobis distance between vectors x̄m and µi, and ψ(s) = −ψ(−s) is
Huber’s [10] ψ-function defined as

ψ(s) = s, | s |≤ a,
= sign(s)a, | s |> a,

(11)

for an appropriate choice of the tunning constant a. Similarly, the ith component-
covariance matrix Σ

(k+1)
i in (7) is replaced by

Σ
(k+1)
i ≈

∑nP L

m=1 τi(x̄m;Ψ (k))nmu2
im

(k)(x̄m − µ
(k+1)
i )(x̄m − µ

(k+1)
i )T

∑nP L

m=1 τi(x̄m;Ψ (k))nmu2
im

(k)
. (12)

An alternative to Huber’s ψ-function is a redescending ψ-function where obser-
vations that are extremely atypical of a component will have zero weight for
values of ∆

(k)
im above a certain level (rejection point) [2, Section 7.6]. A review

on robust clustering methods using statistical approaches and fuzzy set theory
can be found in [11].

With the mrkd-trees structure, we perform a robust estimation for Gaussian
mixtures by identifying tree-nodes as three different types. Different weights are
then given on them in the calculation of parameters. The computations involved
in the categorization of tree-nodes can be readily obtained by using only the kd-
tree code of the SPIEM mrkd-tree algorithm. Thus extra burden of computation
is not required. The type of each tree node is determined at the pruning process
and is based on the “denseness” of the node and the distance dim between x̄m

and the current estimated Gaussian centre µi (i = 1, . . . , g;m = 1, . . . , nPL).
The first type is that the node is close to at least one of g components. Let λi

and λ′
i denote the smallest and the largest eigenvalues of Σi (i = 1, . . . , g), which

are, respectively, the minimum and the maximum values of the Mahalanobis
squared distance for all points on unit sphere. For the mth node, if the distance

dhm < λh for some h ∈ {1, . . . , g},
then data points in this node are considered to be come from the main body
(inlier) of Gaussian mixture. Full weight uim = 1 is given to this node for all
i = 1, . . . , g. For calculating T iq (i = 1, . . . , g; q = 1, 2, 3) in (8), we search the
leaf nodes under the mth node for the hth component and prune the node for
other components i �= h. This improves the accuracy of the estimates.

The second type is that the node is far away from all the Gaussian centres
and is not dense. The former condition is determined if

dim > 4λ′
i for all i (i = 1, . . . , g).

The latter is determined if (i) the number of data points in the mth node is
smaller than 10, and (ii) the maximum diagonal element of the sample covariance
matrix Sm of data points in the node, say in the vth dimension v ∈ {1, . . . , p},
satisfies

(Sm)vv ≤ 0.1(S)vv,
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where S is the global sample covariance of the whole data set. Data points in this
node are then considered to be come from the noise (outlier of Gaussian mixture)
and reduced weight uim = 1/∆im is given for all i = 1, . . . , g. A dense node is
not considered as an outlier automatically because a moderate size cluster of
data points may not arise simply by chance (noise) and could be an interesting
feature of the data required further investigation.

All nodes that are not identified as above two types form the third category.
The weight given to these nodes is based on Huber’s ψ-function (11), uim =
ψ(∆im)/∆im, where a2 = χ2

p,0.95 is adopted [9]. Thus, nodes that are atypical of
a component are being given reduced weight in the calculation of parameters.

As an example, Fig. 2(a) shows a simulated data set of Gaussian mixture with
noise. Nodes that are visited during the second scan of the proposed algorithm
are categorized into three types (Fig. 2(b)). It is noted that large sized nodes (and
hence large savings) are observed in areas with less variation in the component-
posterior probabilities.

Fig. 2. Simulated Gaussian mixture with noise. Nodes are categorized into three types

4 Examples

Here we illustrate the proposed algorithm using simulated and real data. The
simulated data consists initially of 50000 data points generated from a eight-
component bivariate Gaussian mixtures, to which 5000 noise points were added
from a uniform distribution over the range −10 to 10 on each variate. The
parameters of the mixture model were

µ1 = (3 0)T , µ2 = (3 − 6)T , µ3 = (−6 5)T , µ4 = (5 7)T ,

µ5 = (−4 − 6)T , µ6 = (−1 7)T , µ7 = (0 3)T , µ8 = (−3 0)T ,

Σ1 = Σ2 =
(

1 0
0 0.1

)
, Σ3 =

(
1 0.1

0.1 0.1

)
, Σ4 =

(
1 −0.1

−0.1 0.1

)
,

Σ5 =
(

1 0.5
0.5 0.5

)
, Σ6 =

(
2 0
0 0.5

)
, Σ7 =

(
2 0.5

0.5 0.5

)
, Σ8 =

(
2 −0.5

−0.5 0.5

)
,
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with equal mixing proportions πi = 1/8 (i = 1, . . . , 8). The true grouping of the
eight-component Gaussian mixture is shown in Fig. 3(a). We now consider the
clustering obtained by the robust estimation of the proposed SPIEM mrkd-tree
algorithm. The clustering so obtained is given in Fig. 3(b). It compares well
with the true grouping in Fig. 3(a). The result of fitting Gaussian mixture of
eight components is given in Fig. 3(c) for comparison. It can be seen that the
eight-component mixture fails to identify correctly some covariance matrices.

Fig. 3. Results for simulated Gaussian mixture with noise

A more complex mixture model may be adopted to model the additional
background noise. If the number of components is treated as unknown and a
Gaussian mixture is fitted, then the number of components selected via the
Akaike’s information criterion (AIC) and the Bayesian information criterion
(BIC) is eleven [2, Sections 6.8–6.9]. The additional three components are at-
tempting to model the background noise. However, estimation of some covariance
matrices is still affected by the noise. In comparing the computational perfor-
mance of these algorithms, the same initialization procedure was used in this
simulation study. Ten trials of k-means with two scans were performed for each
model to initialize the EM-based algorithms [2, pp. 98]. The number of scans and
the CPU time (in seconds) required for various models are presented in Table 1.

Table 1. Computational performances for simulated Gaussian mixture with noise

Method No. of scans CPU time (sec.)

SPIEM–kd-tree 12 5
EM (8 components) 44 77
EM (11 components) 134 322

We now apply the proposed algorithm to segment a real 2D MR image data of
the human brain into three regions (gray matter, white matter, and cerebrospinal
fluid) in the presence of background noise arising from instrument irregularities.
The data set was acquired by a two-Tesla Bruker Medspac whole body scanner.
The acquisition matrix was 256× 256. For each pixel, T1-, T2-, and ρD-weighted
image intensities were available. Fig. 4(a) displays the T1-weighted image. In the
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analysis, the volume of interest (VOI) was determined using a mask of head.
This eliminates part of the surrounding tissues of the brain. A procedure for
computing the mask is described in [12]. This step does not need to be precise
as robust estimation will be undertaken subsequently. We considered g = 3
corresponding to the three main tissue types as described above. The result
is displayed in Fig. 4(b). It can be seen that the three tissue types are well
separated. It is noted that some dark spots, which correspond to the outlier,
are observed. These can be corrected by applying a Markov random field (MRF)
model to capture the spatial correlation in image intensities between neighboring
pixels [5]. A “contextual” segmentation based on the MRF model of [5] (with
parameter β = 1) is displayed in Fig. 4(c) for comparison.

Fig. 4. Results for real 2D MR image data

5 Conclusions

We have described a robust version of the SPIEM mrkd-tree algorithm for speed-
ing up the mixture model-based image segmentation. During the pruning process
of kd-trees, nodes are categorized into three different types and different weights
are then given in the calculation of parameters. The proposed method has been
illustrated using real and simulated data. The mrkd-tree approach, however,
will not be able to speed up the EM algorithm when the dimension of the data
increases, for example, there appears to be little gain for p ≥ 6. Dimensionality
reduction methods may be adopted [4] although this is in general not a problem
in the image segmentation as p ≤ 3 usually holds. Alternative fast moment-based
method has also been considered in numerical analysis [13].

In this paper, we focus on the robust estimation within the kd-trees frame-
work. A detailed description of other robust approaches to the fitting of Gaussian
mixtures can be found in [2, Chapter 7]. For example, the simulated data in Sec-
tion 4 may also be well fitted by a eight-component Gaussian mixture and an
additional uniform component. A similar model (a three-component univariate
Gaussian mixture and a uniform distribution) has also been used to segment
1D MR images [14]. However, the model may not be work as well in situations
when the noise is not uniform or is unable to be modeled adequately by the
uniform distribution. In contrast, our method is able to speed up the segmenta-
tion process and at the same time provide robust estimation without much extra
computational burden.
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A drawback of our robust version is that the log likelihood values are no longer
monotonically increasing after each scan (compared to [4]). The algorithm, how-
ever, can be terminated by considering the convergence of the estimates at each
scan. Alternatively, the log likelihood value may be approximated by imposing
weights uim in its calculation. Weight functions in terms of the Pearson residu-
als have been considered in [15, 16]. The application of this weighted likelihood
methodology within the kd-trees framework requires further investigation.
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