
Reversible Data Embedding Based on the Haar
Wavelet Decomposition

Henk Heijmans and Lute Kamstra

CWI, Kruislaan 413, 1098 SJ Amsterdam
The Netherlands,

Henk.Heijmans@cwi.nl and Lute.Kamstra@cwi.nl

Abstract. This paper presents an improved version of Tian’s algorithm
for reversible data embedding. The improvement is highest at low em-
bedding rates.

1 Introduction

Digital information and communication technologies are now within reach of
every household and they have changed our daily life in many different ways.
It doesn’t require too much imagination to expect that this pervasion of our
society by modern technologies such as the Internet, will be a maintaining and
continuing one. The impact of the Internet is perhaps most visible in the use
of digital media such as audio, image, and video. It has not so much affected
the creation of these media, but to a much larger extent their reproduction
and distribution. Every schoolboy or schoolgirl with a computer and Internet
connection is now able to set up his or her own online music store.

Digital media have numerous advantages over analog media, such as higher
quality, easy editing, lossless copying, and fast and efficient distribution. At the
same time, such advantages may turn into disadvantages when the underly-
ing technologies are being exploited by non-authorised users. But digital media
also offer the possibility to embed additional data into the original media data
in a way that is perceptually, and sometimes also statistically, undetectable.
This data embedding potential can be exploited to build protection mechanisms
against the threats mentioned before, or to provide additional functionalities. In
this paper we discuss one particular algorithm for data embedding which has the
property that it is reversible, meaning that it is possible to restore the original
content after data extraction.

In the following section we give a short overview of some data embedding
applications, and in Section 3 we concentrate on the reversible (or lossless) data
embedding framework. An interesting and powerful reversible data embedding
algorithm was introduced by Tian [9]. We will discuss it in more detail in Sec-
tion 4, and we present a major improvement of this algorithm in Section 5.
Finally, Section 6 gives some experimental results and lists some conclusions.

5

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

2 Data embedding

There is a huge literature dealing with various technical, application oriented,
and legal aspects of data embedding but unfortunately there is no common
agreement about the use of terminology1 in this matter. In the literature, one will
also often come across terms such as data hiding, steganography, and (digital)
watermarking. In this paper, we will reserve the term “watermarking” for the
family of data embedding techniques that satisfy some additional constraints, in
particular robustness; see also below.

We briefly list various data embedding frameworks along with some applica-
tions for which they may be used. We warn the reader that this list is far from
exhaustive and is only meant to give some flavour of this research area. More
comprehensive accounts can be found, among others, in [3,5,8]. In the remainder
of this paper we will restrict ourselves to digital images.

Digital watermarking, as the phrase suggest, is the process of inserting
an invisible watermark into digital media, e.g. for the purpose of copy control
(e.g., DVD’s) or copyright protection. A major constraint that any watermarking
scheme needs to satisfy is robustness: the embedded watermark needs to be
robust under unintentional distortions such as digital-to-analog and analog-to-
digital conversion, enhancement or filtering, compression, etc, as well as under
intentional distortions meant to remove the watermark, or rather to render it
undetectable.

Fingerprinting In the literature one finds different interpretations of the
word ‘fingerprinting’. Firstly, it is used for the technique where unique informa-
tion (think of a digital serial number) is inserted into each copy of the image.
This enables the rightful owner to trace unauthorized copies back to the source.
Another interpretation, that seems to become more accepted by the community
is that of extracting a set of features which uniquely identifies the image. In
that sense, the concept is very similar to that of human fingerprints, or some
other biometric feature. The fingerprinting system consists of two components,
the extraction algorithm which is used to generate a database of fingerprints and
the recognition algorithm that compares extracted fingerprints against a large
database of fingerprints. The technique of fingerprinting seems very useful for
audio applications, where it can be used for example to recognise CD tracks, etc.
Strictly speaking, fingerprinting (in the second meaning) does not belong to the
family of data embedding as, in most cases, no data is inserted into the media.

Authentication of digital media is concerned with the problem of verifying
that the media is the same as the one that was originally created and has not been
tampered with. Additionally, one may be interested in authentication algorithms
that are able to detect the nature and location of later modifications.

Steganography literally means “covered writing”. It involves methods of
transmitting secret messages by means of innocuous carriers in such a way that
the very existence of the hidden message is undetectable; the latter means not
only that is imperceptible, but also that its embedding cannot easily be revealed

1 A first attempt in this direction has been made by Pfitzmann in [1].

6

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

by advanced statistical methods. Here, the hidden message can be any kind of
data that allows a binary representation. Two major differences with watermark-
ing applications are evident: robustness of the method under distortions is much
less of an issue for steganography than for watermarking, but on the other hand,
steganography requires a much higher capacity than watermarking.

Indexing is concerned with the embedding of metadata information into the
media. The metadata can be provided as additional information, but can also
be extracted and then inserted into the media e.g. to allow efficient browsing.
A major difference with watermarking and steganography is that security of
the method is not a requirement, as the embedded data provides additional
functionality to the user.

As one can one see from these different type of applications, the possible list
of requirements a data embedding scheme has to meet is long and diverse, and
most importantly, strongly dependent on the application. Watermarking schemes
for copy control or copyright protection need to be robust in the sense that they
can resist attacks with the intention to remove the watermark or insert another
one. For authentication applications, on the other hand, the watermark needs to
be fragile. But in both cases, the watermark needs to be secure in the sense that
embedding, and possibly also detection, requires a secret key. In this respect,
a guiding principle, which is becoming more accepted within the watermarking
community, is Kerckhoff’s principle, known from cryptography. It says that the
algorithm that is used for watermarking is publicly known and that the security
of the method lies in the choice of the key. There are also cases, such as indexing,
in which security may not be an issue at all. For steganography applications,
the capacity of the method is a major issue, whereas in some watermarking
applications it suffices to embed just one bit, indicating the presence of the
watermark.2

3 Reversible data embedding

Most existing data-embedding algorithms distort the original signal in an irre-
versible manner and then one of the challenges is to minimise distortion against
capacity. But there are various applications, e.g. in medical or military imaging,
where any distortion, no matter how small, is intolerable. In such cases one has
to take recourse to reversible (also called lossless) data embedding methods. This
means that the original signal can be recovered after extraction of the message
(or watermark). That such reversible embedding is possible at all, is due to the
fact that images usually possess strong spatial correlations. In fact, such corre-
lations are exploited by compression algorithms such as JPEG, to reduce their
size.

In practice, the main ingredient of a reversible data embedding algorithm
is the introduction of an alternative representation which, as much as possible,

2 Note however, that the fact that only one bit is embedded does not mean that only
one bit of original data has been changed by the algorithm!

7

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

decorrelates the data. In Figure 1 below, this new representation is described by
a transformation R with inverse R−1. When applied to an image, it creates a

+ message Mimage I modified image I'

representation R(I) representation R(I)

message Mfree space
R

-1

R

R

message embedding
creating free space

by transformation R

transforming back

to image domain

Fig. 1. General scheme of reversible data embedding.

certain amount of “free space” which can be used to insert the message M . After
back-transformation to the original image domain we obtain a modified image
I ′. Symbolically:

I ′ = R−1 (R(I) ⊕ M) .

Here the ‘⊕’ denotes the message embedding algorithm, which is assumed to be
an invertible process with inverse denoted by ‘�’. Thus we can extract both M
and I at the decoder site:

I = R−1 (R(I ′) � M) .

Preferably, R is chosen in such a way that it creates a large free space, i.e., has
a strong decorrelating effect. Furthermore, filling the free space with random
values should not lead to great distortions in the reconstructed image.

The literature on reversible data embedding is quite limited. Some interesting
work is done by Fridrich and co-workers [4], by Celik et al [2], and by Kalker
and Willems [6]. The algorithm in this paper builds upon a recent approach by
Tian [9], whose key idea is to choose for R the Haar wavelet decomposition and
to embed the message M in the resulting high-pass band. Tian’s algorithm will
be described in much greater detail in the following section

4 Tian’s method

Tian [9] presented a new method for reversible data embedding which he called
difference expansion. The key idea is to add, rather than replace, bits in the
detail band of the Haar expansion. As a result, the embedding capacity for this
method is considerably higher than in [2, 4].

4.1 The Haar transform

Tian’s method is based on a row-by-row3 integer-valued Haar wavelet transform
of the image. Given a grey-scale image I : [1,Mr] × [1,Mc] → {0, 1, . . . , 255},
3 This can be modified and extended in various ways.

8

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

where Mr,Mc is the numbers of rows and columns, respectively. Consider the
values at two neighbouring pixels x = I(i, 2j) and y = I(i, 2j + 1). The integer
Haar transform maps the pair (x, y) onto another pair (l, h) given by

l =
⌊

x + y

2

⌋
and h = x − y . (1)

Here �·� is the floor function, i.e., �x� is the largest integer ≤ x. The transfor-
mation given by (1) is invertible and x, y can be computed from

x = l +
⌊

h + 1
2

⌋
and y = l −

⌊
h

2

⌋
. (2)

The Haar transform in (1) maps the original image I onto a low-pass image L
given by L(i, j) = l and a high-pass image H with H(i, j) = h. Both images have
domain D = [1,Mr] × [1,Mc/2]; note that we have assumed that Mc is even.
Data embedding is done by modifying the values of the high-pass image H. This,
however, is not always possible as it may give rise to values x, y reconstructed
from (2) which lie outside the range [0, 255]. In fact, one can easily verify that,
for a given l, the value h must lie inside a so-called invertibility region R(l) in
order that the reconstructed values x, y are integers between 0 and 255. This
region is determined by

|h| ≤ 2(255 − l) and |h| ≤ 2l + 1 .

Note that the size and shape of R(l) depends heavily on l; if l is close to the
endpoints 0 or 255, then it is small, but if l has some intermediate value, i.e.
close to 127, then it can be large.

4.2 Partitioning of the subband domain

The domain of the subband images L and H is partitioned into four parts as
shown in Figure 2. Let C be the subset of changeable pixels, i.e., the pixels
(i, j) such that the LSB (least significant bit) of h = H(i, j) can be flipped
while preserving invertibility, i.e., 4 �h/2� − h + 1 ∈ R(l), where l = L(i, j).
Furthermore, E is the subset of expandable pixels (i, j): we can add a bit to h
without destroying invertibility, i.e. 2h, 2h + 1 ∈ R(l). Obviously, E is a subset
of C. Let E0 be the subset of C with pixels (i, j) for which H(i, j) equals −1
or 0. Then (i, j) ∈ C iff (i, j) ∈ E, and thus we get that E0 ⊆ E ⊆ C . These
definitions partition the domain D into four disjoint subsets: D = E0 ∪ (E \
E0)∪ (C\E)∪ (D\C) . The first two subsets comprise all expandable pixels, the
third subset contains pixels that are changeable but not expandable, and the
last subset contains all pixels that are not changeable. An illustration is given
in Figure 2.

4.3 Embedding algorithm

Data embedding takes place by a combination of expansion and modification.
Since, as a rule, expansion leads to more severe distortion than modification,

9

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

E
0

E\E
0

C\E D\C

E

C

Cexp Cmod

Fig. 2. Partitioning of the domain D into four subsets.

the number of pixels that will be subject to expansion will be limited as much
as possible. We denote by Cexp and Cmod the subsets of pixels in C that will
be subject to expansion and modification, respectively. Here Cexp is a union of
E0 and a subset of E\E0. There is freedom as to the choice of this subset, but
it should be taken into account that small difference values give rise to small
distortions in the reconstructed values x′ and y′.

The subset Cmod = C \Cexp contains the remaining pixels in C. To enable
reconstruction, the decoder has to know how C was subdivided into Cexp and
Cmod. This is achieved by the definition of a location map, which, in Tian’s
paper [9] is a binary image on D which equals 1 at pixels in Cexp and 0 elsewhere.
Using a compression scheme such as JBIG2, this location map is then compressed
losslessly, resulting in a bitstream L. Since for most real-world images, more than
90% of the pixels in D are expandable, one finds location maps that allow very
efficient compression, resulting in a high embedding capacity.

Not only the location map has to be embedded but also the LSB’s of difference
values of pixels in Cmod, as these are overwritten at the encoding stage. We
denote the corresponding bitstream by C. Thus the overall bitstream that needs
to be embedded is given by B = L·C ·P , where P is the (message) payload, and
‘·’ denotes concatenation.

4.4 Discussion

The original method of Tian has two very serious drawbacks. The first concerns
the capacity control problem. It is easy to see that embedding is indeed possible if
|L|+|C|+|P| ≤ |C| ,which, after using that |C| = |Cmod| and |C| = |Cmod|+|Cexp|,
can be rewritten as |L| + |P| ≤ |Cexp| . How does one choose Cexp and Cmod in
such a way that this inequality holds and distortion is limited? A second disad-
vantage is the overhead cost due to the embedding of the location map bitstream
L, which always represents the entire domain D, even for very small payloads P.
As a result, small payloads are embedded at relatively high distortions. In the
following section we present an alternative method which makes it easier to deal
with the capacity control problem and also circumvents the second problem.

10

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

5 Modification of Tian’s algorithm

Our alternative method contains the following two major improvements. We
use the low-pass image L to ‘predict’ the location map, and use an adaptive
arithmetic coder to compress the much sparser map of erroneous predictions.

5.1 Global description

As before, embedding is done by either expanding or modifying the values of
the high-pass image H. Thus the encoder does not affect L and we can use the
information contained in L to predict the nature of H, both at the encoder and
the decoder. More precisely, we predict that |H(i, j)| is small, and hence pixel
(i, j) is likely to be expandable, if L is relatively homogeneous near (i, j). We
introduce a regularity measure µ : C → IR+ which measures the regularity or
smoothness of L in the neighbourhood of (i, j) (regular pixels being represented
by small µ-values). There are several options for defining µ, but in this paper
we will restrict ourselves to a local variance measure:

µ(i, j) =
1

|W (i, j)|
∑

(i′,j′)∈W (i,j)

(
L(i′, j′) − L̄(i, j)

)2
, (3)

where W (i, j) is a window centered at (i, j), and L̄(i, j) is the average of L inside
W (i, j). We use µ to sort C into a list Cµ = {(ik, jk)} with ascending µ- values.
Pixels at the beginning of the list are more likely to be expandable than pixels
more toward the end, and in addition, H tends to be small at such pixels. The
order of embedding follows that of the list Cµ and the location map merely
represents the correctness of our prediction. To be precise, the location map, or
rather, location bitstream, is the sequence a1a2 · · ·, where ak = 0 if (ik, jk) ∈ E
and ak = 1 if (ik, jk) ∈ C \E. It can be expected that the location bitstream
consists mostly of 0’s, especially in the beginning, and therefore allows strong
lossless compression, e.g., by an adaptive arithmetic coder (AAC).

5.2 Capacity control

Denote by cap(n) the net capacity in case that the first n pixels in Cµ are used for
embedding. For embedding the payload P, we need to choose n large enough,
namely so that cap(n) ≥ |P|. Denote by L(n) the encoded (i.e., compressed)
location bitstream, and by C(n) the bits that are overwritten. Thus

B(n) = L(n) · C(n) · P ,

is the bitstream that is eventually embedded. Denote by κ(n) = |L(n)| the
length of the bitstream L(n) that results from the AAC encoding of the location
bitstream a1a2 · · · an. Let

σ1(n) =
κ(n)∑
k=1

ak = |C(n)|

11

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

be the number of 1’s in the first κ(n) bits of the location bitstream. Such bits
correspond with pixels which are changeable but not expandable, hence they are
overwritten and stored in C(n); therefore σ1(n) = |C(n)|. The number of 1’s in
the remaining part of the location map equals

σ2(n) =
n∑

k=κ(n)+1

ak .

To keep distortion minimal, we would prefer to skip pixels that are not expand-
able rather than overwriting them. However, skipping a pixel is only an option if
the decoder is aware of its non-expandability; this is only the case after the loca-
tion bitstream has been decoded, i.e., if k ≥ κ(n). Therefore σ(n) = σ1(n)+σ2(n)
pixels among the first n are non-expandable, and hence ineffective. Thus we ar-
rive at the identity cap(n) = n−κ(n)−σ(n) , and hence cap(n) ≥ |P| is satisfied
if |P| ≤ n − κ(n) − σ(n) . In general, cap(n) is increasing with n. For small n it
will be negative due to some overhead such as the header comprising κ0 bits.

5.3 Encoding algorithm

In this and the following subsection we describe the actual encoding and decoding
algorithm. Here we do not have enough room to give all the details. The reader
interested in these details is referred to [7].

The input for the encoding algorithm is an input image I along with a payload
P that needs to be embedded into I. The output is a modified image I ′ with
the same dimensions as I. The algorithm starts with the Haar decomposition of
image I into L and H. Now we can also compute the partition of the domain
shown in Figure 2. Next, we compute the regularity measure µ from L, the sorted
list Cµ from C and µ, and the location bitstream a1a2 · · ·. This bitstream is
compressed with an adaptive arithmetic coder (AAC) till the requested capacity
is available, i.e., cap(n) ≥ |P|. This yields the output bitstream b1b2 · · · bκ(n)

4

which is then embedded in the first κ(n) pixels of Cµ, either by expansion (if
ak = 0) or by modification (if ak = 1). In the latter case, the LSB of H(ik, jk)
has to be stored in order to enable inversion at the decoder. We obtain the
correction bitstream C(n) to which we concatenate the payload P, and embed
this at the remaining pixels of Cµ, or rather Cµ ∩ E. In other words, pixels for
which ak = 1 are skipped. Finally, we end up with a modified high-pass image
H ′, and now I ′ is found by taking the inverse Haar transform of L and H ′.

5.4 Decoding algorithm

The decoding algorithm extracts both the original input image I and the payload
P from the modified image I ′. First, we apply the Haar transform to I ′ to obtain
L and H ′; note that the low-pass band L is the same as for I, and that the
high-pass band H ′ contains all embedded data. We can use L to compute the
4 This includes a fixed header used to store the length of the body part; see [7].

12

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

regularity measure µ that was used for embedding. Since the changeable pixels
haven’t been affected by the embedding either, we are able to recover the sorted
list Cµ. Thus we can read the bitstream b1b2 · · · bκ(n) which, after AAC-decoding,
returns the location bitstream a1a2 · · · an. Now we can read the remaining bits
C(n) · P, and restore the original H-values by means of h = �h′/2�. Since at this
stage, we have the location map at our disposal, we can simply skip pixels (ik, jk)
in C\E, characterized by ak = 1. In a next step we restore the H-values at pixels
with k = 1, 2, . . . , κ(n): if ak = 0 then h = �h′/2�, otherwise h = 2 �h′/2� + b,
where b was the bit overwritten by the encoder and stored in the correction
bitstream C(n). Now the remainder of the bitstream is P. Applying the inverse
Haar transform to L and H returns the original image I.

6 Experimental results and discussion

We tested the original method of Tian and our variant of his method on a
number of test images and compared the distortion (PSNR) versus capacity
behaviour of both methods. Here, we will present the results of this comparison
for one image only: the 512 × 512 Lenna image. However, the shape of the
distortion-capacity curves of other images is very similar. The maximum capacity
is usually the same (0.5 bits per pixel), but the distortion at which this maximum
is obtained varies from image to image. Tian presented two methods for selecting

35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

PSNR (dB)

C
ap

ac
ity

 (
bp

p)

Tian
Modified Tian

Fig. 3. The capacity versus the distortion (right) of both Tian’s original method and
our variant for the Lenna image (left).

Cexp, the pixels used for difference expansion. In our experiments, we used the
one that minimises the mean square error introduced by the embedding. This
method gives the best results when PSNR is used to measure distortion. In his
experiments, Tian used a JBIG2 encoder to compress the location map. Since

13

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

we did not have such an encoder at our disposal, we used an adaptive arithmetic
coder in our implementation of Tian’s original method. This compression method
gives slightly worse results, but the difference is not substantial.

When testing our variant of Tian’s algorithm, we used a number of different
regularity measures µ to choose which pixels to use for expansion, most of which
performed equally well. The results below are based on the local variance measure
as defined in (3) with window:

W (i, j) = {(i − 1, j), (i, j − 1), (i, j), (i, j + 1), (i + 1, j)}.
The partition of the subband domain of Lenna is as follows: 21893 pixels (≈16.70%)
in E0, 109173 pixels (≈83.29%) in E \ E0, 6 pixels in C \ E (≈0.002%), and no
pixels in D \ C. Figure 3 shows, for both methods, the distortion caused by the
embedding of different sized payloads.

For the Tian method, due the overhead of embedding the entire location
map, the net capacity only becomes positive after selecting more than 70% of the
locations for expansion, and at this point, the PSNR has already been reduced to
45.5 dB. Our modification of Tian’s method does not have this problem: the net
capacity is positive when less then 1% of the pixels is selected for expansion. This
is clearly visible in the figure: at a capacity of 0.04 bit per pixel, the difference in
distortion is 10 dB. Overall, our extension of Tian’s method performs better that
the original method for all capacities (even when JBIG2 compression is used in
Tian’s method). However, differences become smaller for higher payloads: when
more pixels are selected for expansion in Tian’s method, the location map can
be compressed better, thus decreasing the overhead.

References

1. Anderson, R. J., Ed. Information hiding terminology (1996), vol. 1174 of Lecture
Notes in Computer Science, Springer.

2. Celik, M. U., Sharma, G., Tekalp, A. M., and Saber, E. Lossless generalized-
lsb data embedding. submitted to IEEE Trans. Image Proc., 2002.

3. et al, W. B. Applications for data hiding. IBM Systems Journal 39, 3&4 (2000),
547–568.

4. Fridrich, J., Goljan, M., and Du, R. Lossless data embedding - new paradigm
in digital watermarking. EURASIP J. Appl. Signal Processing: Special Issue on
Emerging Applications of Multimedia Data Hiding, 2 (2002), 185–196.

5. I. J., C., Miller, M., and Bloom, J. Digital Watermarking. Morgan Kaufmann
Publishers, San Francisco, 2001.

6. Kalker, A. A. C. M., and Willems, F. M. J. Capacity bounds and code con-
structions for reversible data-hiding. In IS&T/SPIE’s 15th Ann. Symp. Electronic
Imaging (Santa Clara, California, 2003).

7. Kamstra, L., and Heijmans, H. Lossless data embedding using wavelets, 2003.
8. Swanson, M. D., Kobayashi, M., and Tewfik, A. H. Multimedia data-

embedding and watermarking technologies. Proceedings of the IEEE 86, 6 (1998),
1064–1087.

9. Tian, J. Reversible data embedding and content authentication using difference
expansion. submitted to IEEE Transaction on Circuits and Systems for Video
Technology, 2003.

14

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

