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Abstract

This paper presents recent developments of
energy minimizing contour algorithms, or snakes,
that are widely used in shape analysis and image
processing techniques. The formulae involved in
the calculation of energy functions of a closed
contour and forces that effect the evolving process
of the contour are described. Starting with the
discrete model from which snakes were born,
we present recently developed snake algorithms,
namely, topology adaptive and B-spline snakes.
We also propose in this paper a new definition for
energy minimizing splines based on Non-Uniform
Rational B-Spline (NURBS) curves which al-
low local shape control by modifying the weights
associated with each control point. The results
obtained from both synthetic and real images show
that snakes with NURBS properties demonstrate
more local flexibility than their earlier counterparts.

1 Introduction

The development of snakes was first introduced
to the research arena by Kaas, Witkin and Ter-
zopoulos [1]. The model is composed of an elastic
curve that changes its shape dynamically to object
topologies and is guided by internal forces (elastic
forces) and external forces (image and constrained
forces), based on local information. The mathemat-
ical formulation of the model facilitates integrating
image features, desired contour properties and high
level knowledge that act as constraint forces to an
initial configuration.

The active contour is initialized by drawing an
approximate curve around the object of concern.
It is then subjected to various forces derived from
image features and contour properties that result
in the nodes being evolved from one location to
another. Algorithmically, snakes are fast, robust,
seemingly intelligent and can be subjected to addi-
tional restriction forces during the converging pro-
cess. Robustness to noise and the flexibility to
represent a wide variety of shapes have made the
snakes generally well-behaved and predictable.

The use of snakes for segmentation and analysis
of anatomical structures in the human body
and for other image analysis tasks have been
investigated by several researchers during the past
decades [2, 3, 4, 5]. A majority of these research
deals with generalizing the form of the contour
and finding better solutions for the convergence
and stability problems encountered during energy
minimization. However, traditional active contour
algorithms, namely, discrete, topological adaptive
and B-spline, suffer from the inability to adapt to
the topology of the object without increasing the
number of snake points. In order to address this
issue, we propose a new active contour formulation
based on NURBS. The additional weighting term
in the NURBS function, unlike its predecessors,
influences the snake to attract towards the control
points without adding new control points.

2 The Snakes Model

Definition 1. Image: An image is defined as a
function I : Q@ — @ in which I(p) gives the inten-
sity at the pixel location p € Q where Q € N? is the
2D image domain. The value @ = {0, 1, ..., 255} de-
notes the set of intensity levels that a pixel location
can take.

Definition 2. Curve. A curve is a one parameter
vector-valued mathematical function v : [0,1] —
Q such that an arbitrary point on the curve v is
parametrically expressed as v(s) = (z(s), y(s)), s €
[0, 1].

Definition 3. Internal Energy: The internal en-
ergy E;n: at a point v(s) on a curve v defines the
amount of stretching and bending the curve can
undergo and is given by
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where the constants «,3 € R spell the amount of
stretching and flexing on the contour, respectively.
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Large values of o increase the internal energy of
the curve as it stretches widely while small values
make the energy function insensitive to the amount
of stretch. Similarly, large values of 3 increase the
internal energy as it forms more curve segments
with large curvatures while small values of 5 make
the internal energy function insensitive to curves.

Definition 4. External Energy: The external en-
ergy Fe,; at a point v(s) on a curve v is determined
by the intensity features of an image such that

Ben(v(s) = =57 IVIGE)E (2)

where v € R is called the the edge coefficient.
Large positive values of y tend to make the curve
align itself with dark regions on the image I whereas
large negative values of y make it align itself with
bright regions.
Definition 5. Balloon Energy: The balloon en-
ergy Fpq on a curve point v(s) is defined as
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where § € R is the amplitude of the balloon force
[6]-

The balloon energy ensures that the curve is
not attracted towards weak edges or spurious noise
and makes it inflate near high intensity regions and
deflate at low intensity areas according to region-
based image intensity statistics [7].

The total energy E of the curve v can now be
represented as an integral of internal, external and
balloon energies as follows:

B(v) :/0 (Bint (v(5)) + Beat (v(5)) + Epar(v(s))) s (4)

Definition 6. Dynamic Curve: A dynamic curve
is a two parameter vector-valued mathematical
function v : [0,1] x [0,00) — Q defined in terms
of its z and y coordinates which in turn are
parameterized by a linear parameter s € [0, 1] and
time ¢ € [0, 00) such that v(s,t) = (z(s, t), y(s, t)).

Definition 7. Active contour: An active contour
is a dynamic curve that evolves over time trying to
minimize its total energy such that if v(t) repre-
sents a contour at time ¢, the curve at time ¢ + 1
can be found by

v(t+1) = argineig E(v(t))

where V is the set of all possible dynamic contours
and E(v(t)) is the total energy of the contour v at
time ¢.

3 Snake Algorithms

The major active contour models that have
been developed and widely used in recent research
literature are presented in the following.

3.1 Discrete Snakes

A discrete snake was first used to introduce the
principles of energy minimizing contours in [1]. It is
an active contour that maintains a constant number
of nodes around its closed curve segment until en-
ergy minimization is achieved. Although it is easy
to implement, the accuracy of the final result is lim-
ited to the fact that the number of nodes does not
increase when the snake expands.

A discrete representation for the expressions in
the right hand side of eq. (1) could be given in
finite differences as
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where v;, ¢ = 0,...,n — 1 are the n discrete
pixel locations that form the active contour. The
algorithm for evolving a discrete snake is as follows:

Initialize o, B, 7 and §
Initialize snake nodes
A = number of iterations

1 =20
n = number of snake nodes
Repeat {

For j=0ton—1{
Computer energy at node v;
Move v; to minimal energy location
}
1=51+1
}Until (snake converged or i = \)

3.2 Topology Adaptive Snakes

A discrete snake has a major drawback in that
it cannot penetrate into regions with high curva-
tures for the lack of nodes. One such basic method
that solves this problem is to take the distance
between two consecutive nodes and add or delete
nodes based on this distance. This has the ability
to increase or decrease the number of nodes in order
to converge into high curvature regions by increas-
ing the number of nodes in the contour giving an
accurate segmentation.

Let d; be the Euclidean distance between the
snake nodes v; and v;_;. Also let T; and T}, be the
average FEuclidean distance between the nodes and



the average curvature of the snake. The curvature
k; of the snake at a node v; is found using the
second derivative of v;(s) with respect to s such
that x; = %25‘;". The relevant finite difference
formulae is given in section 3.1. Then, a pseudo

code to represent the evolution is given as follows:

Initialize a, B, v and §
Initialize snake nodes

c=0
n = number of snake nodes
Repeat {

For i =0 to n—1{
If (Clz > Td) and (IC; > Ty)
add node between v;;; and v;
elseif (d; >Ty) and (K; < T )
remove V;
else no change to number of nodes
}
n = updated number of snakes nodes
For j=0 ton—1
Computer energy at node v;
Move v; to minimal energy location
}
c=c+1
}Until (snake converged or c = \)

Another efficient method that introduces topo-
logical flexibility for active contours is introduced
in [8]. It spells out a re-parameterization method
for the contour at each iteration step using an
affine cell decomposition technique. The image
space is subdivided into a grid of cells. At each
deformation step, the cell vertices that the snake
roll over are marked. The set of vertices that reside
inside the T-snake is taken as the boundary of the
model.

4 B-spline Snakes

The type of snakes that are presented in the pre-
vious section suffer from the limitation in that the
movement of a single snake node affects the entire
length of the contour which is described as global
propagation of change of a particular node. The
advantage of B-spline active contours is that the
evolution of a snake point affects only the local
contour segment to which that point belongs [9].
It uses a set of blending functions having only local
influence and depends only on the immediate neigh-
boring control points. Further, in B-spline snakes,
the degree of the curve function is independent of
the number of control points [10].

Let p;, 2 =0,1,...,n — 1 be the control points of
a B-spline curve v of degree k € Z* that is given
by

n—1
v(s) = Z Nik(s)pi (5)
=0
where N; ;, is the B-spline basis function of degree
k such that

1, ifs; <s<sip
Nio(s) = { 0, otherwise.

(5 — i) Nik—1(s) n
Si+k—1 — Si

(8i+k — 8)Nit1,k-1(5)
Si+k — Si+1

Ni,k (s) =

in which ( S0, S1, ---y Sntk+1 )T is the knot
vector.
The B-spline contour given in (5) is defined in

the vector form as
v=p'N

where P = ( Po, Pi, **y Pn-1 )T and N =
( Nojg, Nig, -+, Npo1p )T

The internal energy of a B-spline snake node v(s)
is defined as

E;ni(v(s)) = %{CEPTN, + ﬂpTN”}

where

ON

5, N = ( Now Nigp

s Mo )T

Let pi = (zi,yi)T. Then, eq. (5) is written as
n—1
v(s) = Z Ni i (s)(zi, yi)
i=0

Now, any point on the snake is expressed as v(s) =
(z(s),y(s)) where z(s) = >, N; x(s)z; and y(s) =
YiNip(s)yi ¥ x = (2o, 21, =+, zp1 )7
and y = ( Yo, Y1, 'y Yn—1 )T, the external
energy at a point (z(s),y(s)) is written as

Fearl(a(s),4(5)) = —37 [VIGC™N,y"N) (6)

and also the balloon energy as
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5 NURBS Snakes

In B-spline snakes, in order to increase the flex-
ibility, new control points must be added thereby,
increasing computational times. To overcome this
problem, a new formulation for active contour mod-
els based on NURBS is proposed in this section (a



complete description of NURBS, their properties
and advantages can be found in [11]).

A NURBS curve v(s) of degree k is defined as a
two parameter vector-valued rational functional as
follows

n—1
> wiNi(s)pi
v(s) = SH———
ZwiNi(s)
=0
where w; € Rt are the weights and N, are the

B-spline basis functions as defined in the previous
section. It is also written as

where R; 1, is the rational basis functions of degree
k such that

w; N; 1 (8)

Ri’k (S) = n—1
> w;iNji(s)
=0

It can be further derived that

OR; ;(s)  wi{@N; ;(s) — Ni(s)Q'}
ds Q2
and
Quwi{QN;'x(s) — Nix(s)Q"}
aRf’k(s) _ —2Qwi{QN; () + Q' Ni(s)}
Os2 - Q3

where @ = WwWIN # 0 and w =
( Wo, Wi, tty Wp-1 )T-

Then, the internal energy of the snake node v(s)
is

Eint(V(S)) = {a |pTR'|2 +8 |pTRII|2}

1
2
where R = ( RO,k7 Rl,k7 Tt Rn—l,k )T-

An arbitrary point (z(s),y(s)) on the NURBS
snake can be expressed as z(s) = Y, R;x(s)z; and
y(s) = >, Rir(s)yi. By using a similar expres-
sion as given in eq. (6), the external energy of the
NURBS snake at a point (z(s),y(s)) is given by

1 2
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and also the balloon energy by
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Figure 1: Snakes models converged on synthetic
images: (a) discrete snake, (b) topological adaptive
snakes, (c) B-spline snakes and (d) NURBS snakes

Eventhough the NURBS-based active contour that
we propose inherits the properties of B-spline
snakes, the most important feature in this model is
the inclusion of a weighting parameter to each con-
trol point which allows local shape control without
adding new control points. Whenever the curvature
ki at a control point piT! at time ¢+1 exceeds the
average curvature, the weight wf“ at the control
point pf“ is computed as

R+

t+1 i

witt = wi +1

t+1}

max{k;

K3
where n € R. Hence, the higher the curvature at
a particular point, the greater the attraction of the
curve towards that control point.

NURBS-based deformable models, called D-
NURBS (Dynamic NURBS), for computer aided
geometric design was investigated in [12]. It is an
interactive environment where the user can sculpt
complex shapes by applying simulated forces to-
gether with local and global shape constraints. In
this technique, the weights near the desired regions
have to be interactively adjusted by the designer in
order to influence the shape of the curve.
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Figure 2: Graphs showing (top) the change of num-
ber of nodes and (bottom) energy minimization of
the snake models when applied on the synthetic im-
age.

6 Experimental Results

In order to obtain a measure for the snake model
that extracts the most accurate boundary of the
brain matter, we make use of the similarity index
(SI) proposed in [13]. This method has also been
used in a similar study to quantify segmentation
results obtained from active contours [2]. To
calculate SI, which is sensitive to both the size
and the location of the active contour, the actual
boundary is extracted by manually outlining the
outer boundary of the concerned object in the
image.

| snake models | ST |

discrete 0.956
topological adaptive | 0.971
B-spline 0.979
NURBS 0.995

Table 1: Comparison of areas enclosed by the ac-
tual boundary and the snake contours in synthetic
images.

6.1 Experiments with Synthetic Images

The convergence of the snake models on a syn-
thetic image is illustrated in Figure 1. This 256 x
256 image consisted of a signal-to-noise ratio (SNR)
of 10 dB. We have analyzed the convergence pro-
cess by using the graphs shown in the Figures 2. It
is seen that the energy minimization was achieved
best with the NURBS snakes eventhough it con-
sisted of relatively lesser number of distinct points
than the B-spline snake.

The values of SI are shown in Table 1 for the
four snake models. The NURBS snake model gives
the highest value for SI. In other words, this
model managed to converge to the nearest actual
boundary of the object of interest compared with
the other three.

6.2 Experiments with Digital Images

The versatility and the flexibility of the pro-
posed NURBS snakes were further tested on
clinical images, acquired by a digital camera,
to detect the area of a melanoma; a skin lesion
that arises in the cells producing pigments [14].
Measuring the physical dimensions of such a skin
disease is important for a pathologist to track the
spread of the infection and record the progress of
healing. The area of the lesion, shown in Figure 3,
was manually measured to be 26638 square pixels.
It is clear from the values given in Table 2 that
the NURBS snakes captured the boundary of the
lesion with a higher precision than the other snake
models.

7 Conclusion

In this paper, we have presented a mathematical
formulation for a new type of snake model based on
NURBS. It is also a model driven approach where
each individual snake node has greater flexibility
and independency from its neighbors. Moreover,
NURBS-based snakes allow insertion of additional
control points dynamically during the evolution
stages without increasing the degree of the curve.
The additional weighting parameter facilitates at-
tracting the snake towards the control points when
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Figure 3: Snake models converged on a digital im-

age:

(a) discrete, (b) topological adaptive, (¢) B-

spline snake and (d) NURBS snake.

| snake models | SI |
discrete 0.907
topological adaptive | 0.925
B-spline 0.941
NURBS 0.997

Table 2: Comparison of areas enclosed by the actual
boundary and the snake contours in real images.

the curvature is high without increasing the number
of control points.
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