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Abstract

Australian sign language, Auslan, uses a combination
of hand shapes, positions and movements, as well as fa-
cial expressions to communicate. Our ongoing research is
to develop an automatic translator that graphically trans-
lates English to Auslan. Currently, we have implemented
object-oriented C++ graphics libraries to build a whole up-
per body model. The model is a kinematic tree that allows
physiologically possible movements that are necessary for
Auslan sign display. We have experimented with two angle
representations: Euler and quaternion. Using interpolation
algorithms, we determined that the quaternion angle repre-
sentation is more reliable than the Euler angle representa-
tion. This paper presents the design and implementation of
the Auslan Jam system and our research into angle repre-
sentation techniques. It also discusses future development
of the model and the sign translator interface, and identifies
possible improvements.

1 Introduction

Australian deaf communities use a sign language called
Auslan. Signers use a combination of hand movements
which change in shape and location relative to the upper
body, as well as facial expressions. Auslan is different
from other sign languages, though it is related to the British
sign language. Auslan has different grammar from En-
glish, which makes it difficult for the deaf to master English.
Thus, communication between the deaf and the hearing of-
ten relies on human sign translators who know both sign
language and spoken language.

Automatic translation between Auslan and English is an
active area of research within our department. Research in-
cludes a number of Artificial Intelligence (AI) topics , such
as visual gesture recognition to translate Auslan to English
[5]; audio and visual speech recognition to translate English
to Auslan [4] [3]; and a language mapping system between

Auslan and English. Developing practical applications in-
volves devising output facilities such as text or audio En-
glish output for hearing people, and graphical sign display
for the deaf.

One aspect of our ongoing development is to build an au-
tomatic sign translator that graphically translates English to
Auslan. It uses English text input which is then translated
into Auslan by displaying signs through computer graph-
ics. It will not perform all aspects of translation, such as
the semantic interpretation of the signs. However, given
that the system establishes a sufficient database of signs,
some mapping between signs and letters/words/sentences
could provide an adequate translation for certain interac-
tions (for example, conferences) and informal ones (for ex-
ample, restaurants), as well as a tool for learning signs for
non-signers. It could also be useful in emergency situations
such as in hospitals or police stations, where urgent infor-
mation could be conveyed without having to wait for a hu-
man translator, and where written communication is inap-
propriate.

There are two common methods used to implement the
display and animation of signs in translator systems [2].
The first stores sign representations as frames of a digital
movie, while the other uses stored parametric data allowing
run-time generation of sign movement through interpola-
tion and display of computer graphics primitives.

Unlike the first method, the second method can gener-
ate a smooth interpolation from one sign to another, provid-
ing more realistic output. Our translator uses the paramet-
ric computer-generated sign translation technique. Previ-
ously, we developed a graphical sign translator system that
animates two-handed movement to display signs on a Sun
workstation [6]. The current system uses whole upper body
movement and is developed to run on a domestic PC. This
system is developed in three stages. The first stage is to
build a kinematic model of the whole upper body, where
manipulation of the body joints is possible. The second
stage is to devise an effective technique to manipulate the
model for animation. The final stage is to build an interface

1



where English text input is entered and the model is used to
animate the translated signs.

Currently, we have designed and implemented a graphi-
cal kinematic upper body model calledAuslan Jam.

The kinematic model of the upper human body was de-
veloped to display the signs. This was implemented using
an object-oriented technique where body joints are consid-
erednodeobjects, each containing local orientation param-
eters. These joints are connected to form a kinematic tree,
where each joint location can be determined from the an-
cestor joint orientations and known body segment lengths.
For example, the elbow location is calculated by the orienta-
tions of the body and shoulder, and the lengths from body to
shoulder and from shoulder to elbow. The body is rendered
by displaying a polygonal model for each segment.

We experimented with various interpolation methods us-
ing Euler and quaternion angle representations in order to
manipulate Auslan Jam.

This paper explains the model implementation, reports
the results of interpolation experiment, and finally describes
the ongoing development of a model manipulation tech-
nique and the sign translator interface.

2 Graphical Human Model Design

2.1 Requirements

The biomechanics of the human upper body are very
complex, however, the representation of Auslan requires
only a coarse approximation. A non-uniform simplifica-
tion of the biomechanical model allows complexity to be
retained in areas where it contributes to the visual appear-
ance of the model. For example, many Auslan poses involve
intricate finger positioning. Thus, the model requires many
nodes to provide full degrees-of-freedom (DOFs) allowing
all physiologically possible movements of the hand. In con-
trast, Auslan does not require significant spinal movement.
Thus the DOFs of the spine can be minimised and fewer
nodes are required to simulate spinal movement.

2.2 Design

The biomechanical structure of the upper body can be
well simulated by a kinematic tree. A suitable kinematic
tree consists of a series of nodes, each with a parent and
an arbitrary number of children. A node represents a joint
in the body, containing a transformation from the parent
node’s local axes to its own. The translation component
remains unchanged to represent rigid body segments con-
necting each joint. The rotation component may be modi-
fied to alter the orientation of the body segment. The local
axes of any node can be calculated via forward kinematics
as shown in Figure 1.

Node 2

Node 1

Node 0 T0

T2

T1

Child
Parent

ChildParentSegment 1

Joint 2

Joint 1

Segment 2

Joint 0

Segment 0

Figure 1. A kinematic model of the human
arm. The human arm can be represented as
a series of joints and body segments. This
can be kinematically modelled by associat-
ing nodes in a kinematic tree with joints in
the arm. Each node contains its own coor-
dinate frame in terms of its parent’s coordi-
nate frame. Therefore the local axis of any
node can be calculated using the coordinate
frames of its ancestors. This is known as for-
ward kinematics. (In this example, T2 = T1.T0)

In order to provide a realistic appearance of the human
upper body, each node has an associated polygonal model
representing the surface of the body segment directly fol-
lowing the joint. Thus, a node can be rendered by trans-
forming the associated polygonal model to the node’s local
coordinate space and rendering it. All segments following a
node in the kinematic tree can be rendered by performing a
depth-first traversal of the tree from that node, and render-
ing each node encountered as shown in Figure 2. The entire
tree can be rendered by traversing from the root node.
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Figure 2. Rendering the human upper body
model. Auslan Jam renders the human up-
per body model by depth-first traversal of the
kinematic tree. When a node is encountered,
its associated polygonal model is displayed
of the screen. Once the traversal is complete,
the entire model has been rendered.

We adopted an object-oriented approach for the kine-
matic modelling and rendering system. Each node in the
kinematic tree is an instance of a node class. The node class
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defines pointers to a parent and child nodes to describe the
hierarchy of the kinematic tree. Each node also contains a
pointer to a polygonal model object that represents a body
segment. For example, the elbow node contains a pointer
to its parent node (the shoulder node), its child node (the
wrist node) and a polygonal model representing the fore-
arm. We have included a display method in the polygonal
model class to simplify rendering of the entire tree.

To traverse and render a tree we created a node render
method that utilises the node’s pointers to its children. The
node render method calculates its local coordinate space,
transforms its polygonal shape into this space, and then calls
the shape display method. Then, it calls the render methods
of all its children. This recursive behaviour will render any
forward kinematic tree by depth-first traversal when called
from the root node. Thus it can render any human upper
body pose represented in a kinematic tree.

Our object-oriented approach facilitates modularity and
extensibility. The system is modular because functional-
ity of the system depends upon interfaces between classes.
Thus, technologically different classes are interchangeable
because the implementation of the classes is independent of
the interfaces. For example, the basic polygonal model class
can be replaced with a model class that provides a different
render method or geometrical data format. This is an exam-
ple of the extensibility supported by object-oriented design.

All data are maintained independent of the kinematics
and graphics system. In this way, we allow for future im-
provement of data without the need for changes to the sys-
tem. For example, the kinematic resolution of the human
upper body model can be modified without altering the
workings of the system. Similarly, the geometric resolution
of body segments can also be improved.

2.3 Implementation

We developed the kinematic tree and rendering module
in C++ because it meets our object-oriented design require-
ments and can easily be linked to other components of the
two-way Auslan-English translator system. C++ has an ad-
vantage over languages such as VRML, a popular display
method[11] [8], which is difficult to link with other systems.

We first created a set of fundamental geometric classes,
and then built classes for nodes, models, trees, and poses.
OpenGL was used for rendering because it provides a fast,
standard set of basic rendering functions.

The basic model of the human upper body was created
by using manual measurement of a human participant. It
contains 39 nodes, each with an associated body segment.
There are three nodes to represent the spine. These nodes
represent the base of the spine, the base of the neck, and the
base of the head. Figure 3 shows this.

All joints in the arms (shoulder, elbow, and wrist) are

represented by nodes, and there are 15 nodes per hand. The
fingers are modelled using nodes representing the metacar-
pophalangeal (MP), the proximal interphalangeal (PIP), and
distal interphalangeal (DIP) joints. The thumb is simi-
larly modelled with nodes representing the carpometacarpal
(CM), MP, and interphalangeal (IP) joints. Thus, the kine-
matics of our virtual hand closely approximate a real hand.

Each node allows full three DOF orientation. Physiolog-
ical constraints of movement can be imposed by the anima-
tion system rather than the underlying graphics system.

Figure 3. The initial kinematic tree represent-
ing the human upper body. This tree is
parametrised using measurements from a hu-
man participant. The white circles and lines
represent nodes and arcs of the tree respec-
tively.

3. Joint Orientation Representation

Realistic sign language animation requires accurate con-
figuration of the upper body into poses as well as smooth
animation between poses. In order to achieve this, it is
important to determine an efficient means for representing
joint orientations. We compared two orientation represen-
tation methods: Euler and quaternion. The effectiveness of
these representations are investigated by combining them
with various interpolation techniques.

Euler representation describes the orientation of an ob-
ject using three rotations around three axes of rotation. Al-
though a simple and intuitive method for describing object
orientation, the Euler representation method has some prob-
lems. Euler angles suffer fromgimbal lock, which occurs
when one axis of rotation lines up with another axis of ro-
tation. Consequently, a degree of freedom is lost from the
rotation when this is the case. When directly specifying
the Euler orientation parameters this is not a problem, how-
ever some calculations dealing with Euler angles become
ill-defined near gimbal lock positions. Furthermore, in our
sign display system we graphically manipulate the model
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to define each pose, and the same pose may be generated
by using a different combination of Euler angles. This can
cause problems when animating between poses, possibly re-
quiring remapping of angles before animation.

Quaternions use a scalar,w, and the three coefficients of
imaginary terms,x, y andz to represent orientations. That
is,

q = w + xi+ yj+ zk;

wherei2 = j2 = k2 = �1, x , y, z 2 <.

While quaternions are a four dimensional structure, ro-
tations are three dimensional. An extra condition requiring
quaternions to be of unit length is required to limit the us-
able quaternion space to three dimensions. This means that
quaternion rotations lie on a unit sphere in 4 dimensional
space. For a full discussion of quaternions and comparison
of angle representations, see Dam, Koch and Lillholm [1].

Unlike simpler Euler angles, examining the parameters
of a quaternion does not provide an intuitive method of un-
derstanding the resulting orientation. However, the benefits
of using quaternions outweigh this, and include the abil-
ity to combine quaternion rotations simply by multiplying
quaternions, and freedom from the multiple definition prob-
lem (where there can be more than one set of euler angles
representing a rotation) and the gimbal lock problem of Eu-
ler orientation representations [10].

4. Joint Interpolation

4.1 Interpolation Method

Simple interpolation algorithms were chosen to compare
the Euler and quaternion orientation techniques.

Euler representation was tested using simple linear inter-
polation of the three angles between an initial and a final
pose.

Two interpolation methods were tested for quaternions:

� The linear interpolation (lerp) formula that linearly
interpolates between the four quaternion parameters.
Since the initial and final orientations lie on the sur-
face of a unit sphere, this interpolation “cuts through”
the inside of the sphere. After interpolation, the quater-
nion must be renormalised to ensure it remains a legal
quaternion rotation.

� The spherical linear interpolation method (slerp) is
slightly more complex than the lerp method. Instead
of interpolating linearly between the two positions on
the unit sphere, it directly calculates the position on the
surface of the sphere. This results in the same physi-
cal path being traversed as the lerp method, however

the angular velocity of animation between the two ap-
proaches is different. The formula to interpolate along
the great circle between the initial orientationqi and
final orientationqf is given below. Near the final ori-
entation, whensin(�) � 0, linear interpolation is used.

q(t) =
qi � sin((1� t)�) + qf � sin(t�)

sin(�)
;

where � = arccos (qi � qf ) and 0 � t � 1:

4.2 Practical Comparison

Our experiments were similar to that of Dam et al. [1] but
the interpolation process was visualised by animating the
right shoulder joint of the Auslan Jam model. A simple user
interface was created to graphically manipulate the model,
and was used to generate two poses for each interpolation
test. An animation between these poses was displayed, and
the angular distance to the final pose and angular velocity of
the animation were recorded for 200 frame interpolations.

Figures 4 , 5 and 6 illustrate two important advantages
of quaternion interpolation methods over Euler interpola-
tion methods. The initial orientation of the shoulder for
each animation is(0Æ; 180Æ; 0Æ), while the final position is
an euler orientation of(90Æ; 270Æ; 90Æ). This selection of
orientations illustrates that Euler interpolation does not al-
ways take the most direct path from initial to final points.
An Euler interpolation from(0Æ; 180Æ; 0Æ) to (0Æ; 270Æ; 0Æ)
would produce a different animation path, even though
(90Æ; 270Æ; 90Æ) and (0Æ; 270Æ; 0Æ) are equivalent orienta-
tions. The quaternion interpolation methods produce the
same animation path with either set of endpoints. The an-
gular velocity of an interpolation is an important considera-
tion. The angular velocity graph for the Euler interpolation
shows that it has a non-constant velocity. While the quater-
nion lerp algorithm also produces a non-constant velocity,
it will not suffer from the corresponding problems of mul-
tiple endpoint definition of Euler interpolation. The quater-
nion slerp algorithm is slightly more complex than the lerp
algorithm, but exhibits a constant angular velocity for all
interpolations.

Thus, quaternion angle representation provides math-
matical simplicity in storing orientations, and freedom
from less desirable aspects of the Euler angle representa-
tion method. In our experiment, quaternion interpolation
methods produced satisfactory interpolation between two
key frames, which will be extended to interpolate multi-
keyframes [1] [9].
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Figure 4. A screen capture and velocity anal-
ysis of a 3 degree of freedom Euler interpola-
tion. The arm moves from the default position
(downwards) to a position towards the front
of the model’s body, with a twist of the arm.
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Figure 5. A screen capture and velocity anal-
ysis of a 3 degree of freedom lerp interpola-
tion. The arm moves from the default position
(downwards) to a position towards the front
of the model’s body, with a twist of the arm.
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Figure 6. A screen capture and velocity anal-
ysis of a 3 degree of freedom slerp interpola-
tion. The arm moves from the default position
(downwards) to a position towards the front
of the model’s body, with a twist of the arm.

5 On-going development

We presented Auslan Jam, a system that uses an object-
oriented kinematic model of the human upper body to
graphically display Auslan. Auslan Jam’s graphics libraries
provide facilities to easily extend the system to any biome-

chanical simulation. We use quaternion representation for
natural interpolation from one pose to another. Ongoing re-
search includes improvement of the model, device of model
manipulation techniques to define poses, as well as transla-
tor interface design.

5.1 Model improvements

The Auslan Jam model currently uses a fast and simple
method to render the model figure, since it is designed to run
on a domestic PC without a fast graphics card. However,
the rendering method can be improved to provide a more
realistic model figure.

The model can be extended to provide visual speech sim-
ulation while signing. English speech of the corresponding
signs can be simulated in the face of the model, providing an
additional modality as often used in deaf communication.

5.2 Model manipulation technique

Auslan signs consists of key poses and their in-between
interpolations. There are three ways of producing the key
poses that consist of 3D orientation parameters of the model
kinematic tree. The first method uses a motion capture de-
vice such as a Virtual Reality (VR) ware, or a vision based
system where the joint angles are generated automatically.
The second method graphically manipulates the joint angles
of the model to store the pose. The third method graphically
specifies the path of the model actuators, and allows inverse
kinematics to automatically calculate the poses. While we
currently use the second method, the third method needs to
be investigated to specify hand locations.

Smooth multiple keyframe interpolation is important for
generation of realistic output. The chosen algorithm must
successfully animate between keyframes within a sign (pre-
dictable), and between arbitrary signs (less predictable). A
large body of work has been carried out in regard to in-
terpolating positions of individual objects, which must be
adapted to efficiently interpolate orientations for the articu-
lated Auslan Jam model.

5.3 Design of the translator interface

The proposed structure of the translator interface is
shown in Figure 7.

The translator interface requires a database where kine-
matic configurations of sign poses and motion are stored. It
requires two databases: a hand shape database and a sign
database. The hand shape database stores Auslan basic
hand shapes [7], which separates Auslan signs like the al-
phabet in English, with their corresponding configurations.
The sign database stores Auslan signs by using basic hand
shapes as well as other upper body joint configurations. In
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Figure 7. Structure of the translator system.

order to generate and modify these databases, we will de-
velop a database editor that enables the kinematic model to
be graphically manipulated to allow storage of its configu-
ration in the database. The translator interface will extract
signs from the database and display a sequence of signs by
animating the in-between motion.
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