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Abstract 
 

We present a simple but effective approach to estimate 
the asymmetry in facial expressions using range data. A 
face measuring system called “Cubicfacer” that equips 
two laser scanners and a color CCD camera measures the 
human faces and produces range and color texture images 
simultaneously. Five pre-determined facial actions are 
measured on each subject and 42 symmetrically 
distributed mapping points are then extracted from the 
color images of each action. Pre-selected nodes of a 
generic face mesh are mapped to these points using a least 
squares approximation method. A local approximation for 
facial parts is then applied iteratively and the measured 
range data is transformed to produce a complete wrap of 
the mesh. This procedure is applied for each measured 
facial action and the deformation obtained is analyzed 
with sub-meshes that correspond to forehead, eyes, mouth, 
cheeks and chin areas. Variance and regression analysis 
are performed on patch pairs on left and right halves of 
the meshes to estimate the asymmetry. We set a threshold 
value to extract the prominent patches with greater 
deformation variances to produce an estimation of 
expression asymmetry. Error estimation is further applied 
to analyze the mesh fitting anomalies.  
 

 
1. Introduction 
 

The interests of modeling human faces to be used in 
diverse application areas span over three decades. The 
primary goals of the early work were to animate and 
produce CG characters from the data obtained by 2D or 
3D image acquisition techniques. Development of 
measuring systems, which produce accurate and dense 3D 
data, take the modeling and interpretation tasks to new 
heights due to the availability of geometric information of 
the face. The work on facial expression analysis directly 
applied in the areas of face recognition, morphing, 
simulation models, animations and medical applications. 

Although the human face seems to be a symmetric 
entity, it would be hard to find humans with identical 
facial symmetry. To our evaluation model, inputs are not 
only the faces of apparent-symmetric, but also individuals 

with expression disorders. In this work our attention is 
primarily focused on analyzing different facial actions and 
producing a quantitative description to evaluate the 
asymmetry of each individual. The outcome is to be used 
as a yardstick in facial expression disorder analysis in 
identification, recognition and treatment application areas. 

Various approaches of generic face mesh deformation 
are proposed in the past that applied in parameterized and 
control point models [1,2,3], spline based model [4] etc. In 
most cases, mesh adaptation require segmentation of 
underlying 3D surface or setting up control points on 
feature boundaries, generating overheads in processing. 
An integration of optical flow techniques with mesh 
adaptation is proposed in [5], where deformation 
parameters are needed to setup in the adaptation. The face 
modeling system proposed in [6] automatically generates 
topological face mesh by applying adaptive mesh 
techniques employed in [7]. Although it generates a 
symmetric model, number of patches in each measured 
action tends to vary, making it hard to use in consecutive 
expression analysis. In this work we employ a generic face 
mesh with known topology, and use an N-degree 
polynomial approximation with a least squares method to 
generate a wrap of the mesh to the measured range data. 
 
2. The Approach 
 

In our approach we measure each individual with five 
different facial actions using the “Cubicfacer”, which 
measures a human face with two laser range scanners 
mounted on lateral sides of the face and a CCD camera in 
between them, facing the measuring profile (fig.1).  

 
Figure 1. Face measuring system - Cubicfacer. 

A complete 3D face model is produced in less than a 
second [8]. An adaptive mesh generation is then applied to 
range data after smoothing by median filtering, followed 
by texture mapping, to produce a realistic face model as 
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depicted in fig.2. Since we use a single camera with same 
orientation in the measurement, both range and color 
images maintain a 1:1 correspondence between them.     

   
 (a)  (b)  (c) 

Figure 2. 3D Face model.  
(a) Median filtered range image (b) Adaptive mesh 

result (c) Texture mapped result 
In the phase of texture mapping, adaptive mesh 

generation is applied to the range data. Since the mesh 
generated by adaptive mesh does not possess consistent 
triangle density on both sides of the face, it is not suitable 
for interpretations based on symmetry features of the face. 
Therefore, we adopt an arbitrary generic mesh (fig.3-b), 
that is symmetric along the median plane, which is the 
vertical plane passes through the center of the nose, cutting 
the face into identical left and right halves. This generic 
mesh is in the 2D from, lies on the XY plane. Thus, we 
adopt a method of wrapping the mesh on to the measured 
3D range data with the use of the corresponding color 
texture image. 
 
2.1 Mesh adaptation 
 

The mesh adaptation can be time consuming, tedious 
process if it involves segmentation of range data to extract 
features. Instead, here we apply a simple method of 
extracting features by using the corresponding color 
image, since it possesses the property of 1:1 
correspondence with the range image. We apply sobel 
filter to the color image and extract prominent boundaries 
in eyes, nose and mouth regions by binarizing the sobel 
image. The nose tip location is obtained simply by 
searching the maxima in the range image. Since the facial 
outline obtained by the texture image does not adapt to any 
predefined shape, we use manual mouse clicks on the 
contours to generate outline points. We extract 42 distinct 
points from the texture image (fig.3-a), whose locations 
are known with respect to the generic mesh, for the 
adaptation of the face mesh.  

 
(a)       (b) 

Figure 3. Generic mesh adaptation.  
(a) Texture points - Pi  (b) Mapping mesh nodes - Qi. 

Points extracted from the color image are then polled to 
their mesh counterparts by a least squares approximation 
of a N-degree polynomial function. 
 
2.2 Least squares approximation 
 

 We use an Nth order polynomial function for the least 
squares approximation to fit the generic mesh to the 
measured data. This process consists of two steps. First we 
move mesh vertices to the extracted points of the color 
image, and then poll the Z values from the corresponding 
range image. 
 

Let us consider the parametric function given by, 
 ),( yxfZ = . 
  Where, ),( yxf represents by a polynomial of Nth degree, 
given by, 
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Now consider match points Pi and Qi, where i=1….n, 
represent n points on the color image and the mesh 
respectively (Fig.3). Pi’s are extracted from the color 
image and Qi’s are known with respect to the generic 
mesh. Let ( )

ii PP yx ,  and ( )
ii QQ yx , represent 2D coordinates 

of Pi and Qi respectively. We can thus calculate the 
displacement vectors, mdxi )(

ii QP xx −=  and 

ndyi )(
ii QP yy −= , where m and n are unit vectors along 

x and y direction respectively, for all matching points 
i=1,…,n. 

Since we extract 42 points for initial matching, n is set 
to 42. To calculate displacement vectors for rest of the 
mesh points, we approximate the parametric function 
given in eq.(1) using the least squares method, polling 

idx and idy in Z axis as depicted in fig.4.  
Mesh vertex

Extracted
texture point

X

Y

   

Least squares polynomial

Extracted 
points

Rest of the 
points

dx(dy)

 
              (a)                                        (b) 

Figure 4. Least squares polynomial approximation. 
(a) Displacement vector (b) Polynomial approximation 
 

In the first instance we apply a second degree 
polynomial function as in eq.(2). Thus, coefficients 00a , 

10a , 01a , 20a , 11a , 02a  can be calculated using initial 
displacement vectors. 
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The uncertainty of fitting can be calculated by the error 
term of least squares approximation as, 

[ ]2

1
),(∑ =

−=Ε n

i iZyxf . 

For the best fit, Ε must be minimum. Thus, for a second 
order polynomial, 

0
00

=
∂

Ε∂
a

, 0
01

=
∂

Ε∂
a

, …………, 0
20

=
∂

Ε∂
a

. 

Hence, 

[ ]

[ ]

[ ]∑

∑

∑

=

=

=

=×−=
∂

Ε∂

=×−=
∂

Ε∂

=×−=
∂

Ε∂

n

i
l

i
k

iiii
kl

n

i iiii

n

i iii

xyZyxf
a

xZyxf
a

Zyxf
a

1

1
01

01

1
00

00

0),(
:

0),(

01),(

 

Where, l
i

k
i xy denote the derivative of ii xy  with 

respect to the kla . Simplifying above equations, and 
applying in eq.(2) we can calculate coefficients of the 
polynomial, [ ]021120011000      aaaaaa=TA , by solving the 
matrix equation, 
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Hence, displacement vectors idx , idy , of all mesh 

points, where i=1…..,.M, can be calculated by 
interpolating with coefficients TA . M is the total number 
of points in the face mesh. 

We repeat this procedure again by increasing the order 
of the polynomial to a forth order, and setting a threshold 
value for the error factor. The idea is to move the mesh 
points further closer to the expected locations by iterative 
approximation.  

We then separate feature points on different regions of 
the face, namely eye, nose and mouth regions, where a 
high concentration of facial features is observed. 

Suppose, P’i and Q’i are the match points on a particular 
region, representing extracted color image points and the 
mesh points, respectively. Let their current displacements, 
after the initial mapping, be jdx , jdy , where j=1,..,m, with 
m extracted points. Then we do the same calculations for 
these local values to generate a localized mapping further 
for the selected feature regions, using region dependant 
threshold values. This local matching is done to ensure a 
better mapping for the prominent feature areas of the face. 
Finally, Z values are mapped from the corresponding 
range values, since both color and range images have 1:1 

correspondence, producing a complete wrap of the face 
mesh to the measured 3D data. 

The steps that involved in mesh fitting process can be 
summarized as follows. 
Step (1): extract n mapping points from the captured color 

image. (n = 42 in our case.) 
Step (2): calculate the displacement vectors idx , idy , 

i=1,..,n of those extracted points and corresponding 
mesh counterparts. 

Step (3): apply polynomial function of second degree for 
the least squares estimator, calculate coefficients TA . 

Step (4): interpolate the displacements of other mesh 
points using the coefficients TA . 

Step (5): compare fitting error of all mesh points with a 
threshold value.  

Step (6): if the error exceeds the threshold, calculate new 
displacement vectors idx , idy , i=1..,n, with respect to 
the generated mesh. 

Step (7):  increase the order of the polynomial function for 
the least squares estimator, and calculate new coeffi-
cients TA . 

Step (8): repeat steps (4) to (6). If error still exceeds thres-
hold, continue to step (7). Else, 

Step (9): separate extracted points according to eyes, nose 
and mouth regions. Calculate their displacement vectors 

jdx , jdy , j=1…m, where m is the number of extracted 
points in each region. 

Step (10): repeat steps (3) to (7) with calculated local dis-
placement vectors in step (9). 

Step (11): When the threshold is satisfied, map the corre-
sponding range values from the measured range image 
to produce a complete 3D wrap of the mesh. 

Once the 3D mesh is generated, we apply asymmetry 
measurements against the measured facial actions to 
estimate the difference of deformation on both sides of the 
face. 
 
3. Estimation of Facial deformation 
 

Facial deformation is estimated by calculating variances 
of patches on both sides. 

 
 3.1. Patch variance – single action. 
 

Patch variances are estimated with respect to the sub-
meshes representing different regions of the face. 
Forehead, eye, nose and mouth meshes are defined in the 
generic face mesh beforehand, and used to estimate the 
patch variances. Consider two matching patch pairs in a 
given sub-mesh marked as PLi and PRi, representing left 
and right side patches respectively (fig.5-a). Their 
corresponding edge lengths are denoted as ξLi and ξRi, 
where i = 1,2,3, respectively. If the variance of the ith patch 
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is 2
iσ and total path variance of a given sub-mesh with N 

patches is 2σ , we can define, 
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Thus, we can measure the variance in terms of sub-mesh 
patches. 
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PLi PRi P’Li
P’Ri

Expression A
Expression B

 
(a)                                  (b) 

Figure 5. Variance computation. 
(a) single action (b) multiple actions 

 
3.2 Patch variance – multiple actions. 
 

In the applications of asymmetric facial expression 
analysis, it is often required to measure the variances of 
different facial actions and compare them (Fig.5-b). In a 
similar calculation, as done in the previous case, suppose 
patch PLi of expression A occupies the patch P’Li in 
expression B. Let the patch variances of left and right 
sides denote 2

Lσ and 2
Rσ  respectively. Thus, 
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where Lξ , 'Lξ , Rξ , 'Rξ  represent the lengths of the same 
patch in right and left sides in different expressions. 

LN and RN represent the number of patches in left and 
right sides of the same sub-mesh. Then the comparison is 
performed for both sides of the face to detect the 
asymmetry.  
 
4. Quantitative analysis 
 

In this work, we measure five different facial actions of 
different human subjects with no apparent expression 
disorders, as well as subjects with some expression 
disorders. The actions are chosen to cover movements of 
most parts of the face. These are categorized in the Table 
1. We analyze the range data of human subjects measured 
by the cubicfacer range finder system, using above 
described variance estimations.  

Action code Facial deformation 
A01 Lines on the forehead. 
A02 Eyes closed 
A03 Sniff 
A04 Grin 
A05 Lip purse 

Table.1: Facial actions analyzed 
 
4.1 Variance analysis – single action 
 
Variance of left and right side patches of sub-meshes 
corresponds to eye, mouth, nose and forehead regions are 

calculated to determine the asymmetry in measured 
actions. Measurement result of a normal subject and a one 
with expression disorder is depicted in fig.6. 
 

           
    (a)            (b)            (c)           (d)           (e)            (f) 

Figure 6. Measured actions: normal and disordered 
subjects.  

(a) Relaxed-normal (b) A04 – normal (c) A04 mesh - 
normal (d) Relaxed – disordered (e) A04 – disordered  

(f) A04 mesh – disordered. 
 

The patch variance is calculated in two ways. First, for 
each facial action, similar patches on left and right side are 
evaluated and the variance ( 2σ ) is calculated as discussed 
in section 3.1. Variances of forehead, eye, nose and mouth 
regions are calculated for normal and disordered subjects 
and disordered variations are plotted against normal 
variation sets. The results of eye closure and grin 
expressions are depicted in fig 7. 
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(a)                                          (b) 

Figure 7. Variance comparison- disordered against 
normal. (a) Eye closure (b) Grin. 

 
It can be seen that the bulk of the data has shifted 

towards the disordered axis indicating high patch variance 
with respect to the similar normal counterpart. 
 
4.2 Patch variance – multiple actions 
 

In this case, the variance calculation is done for an 
identical patch in two different actions. Let 2

Lσ  and 
2

Rσ represent the left and right patch variations 
respectively. They are compared to detect asymmetry, as 
described in section 3.2. We set a threshold value to prune 
the smaller variances and extract the higher ones, and 
graphically display the significant deviations in each 
action. Regression of left and right side patch variances are 
also calculated. The standard error factor gives the 
indication of deviation of data from its ideal expectations. 

In fig.8 we demonstrate the variances of eye closed and 
grin actions relative to the relaxed situation for normal and 
disordered subjects. 
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(a)                                            (b) 

 Standard error 
 A02 A04 
Normal 1.342822 1.436317 
Disordered 2.850067 3.441587 

(c) 
Figure 8. Eye closure and grin comparisons with 

respect to relaxed condition. (a) Relaxed-eye closure  
(b) Relaxed-grin.(c) Standard error in both cases. 

 
5. Error compensation for mesh fitting. 
 

As we demonstrated up to now, our estimations have a 
significant impact on the mesh fitting procedure described 
earlier in section 1.1. Therefore here we implement an 
evaluation method, to weigh the impact of fitting error. 
Here we measure a human subject with 50 markers 
attached on pre-determined locations on each face. The 
selection of markers is carefully designed so that they do 
not coincide with feature points and mostly belongs to 
non-feature areas of the face. This enables us to estimate 
the error components of freely moving parts especially on 
the cheeks and mouth areas. Similar expressions described 
in the table 1 of section 4 are measured and the same 
fitting process is applied. Then we track down the markers 
in each expressed face against the relaxed face to 
determine whether the markers occupy the same patches in 
both cases as expected in an ideal situation. Marker 
positions are extracted from the color image and their 
locations are recorded.  
 
5.1 Estimation of patch movement 
 

Although the coordinate systems change between two 
captured actions, local measurements with respect to the 
patches are invariant of each coordinate system. Therefore, 
marker locations are determined using non-zero, localized 
scalar parameters with respect to the patches they belong. 

We first project the generated 3D mesh wrap in to X, Y 
plane since we extract markers from 2D color images. 
Thus, at each estimation, direct calculations can be applied 
with out transforming vector coordinates to the three 
dimensional space. Suppose marker iM  belongs to the 
patch iP  in the generated 3D mesh in the expression iE , 
after mapping, as depicted in fig.9. 

Suppose position vectors of vertices of patch iP  are 
given by 1v , 2v  and 3v  respectively. Let vectors 

31 vva −=  and 32 vvb −= . Let λ and µ  are scalar 

parameters and the position vector of marker iM  is 
represented by m , where,  

)(I−−−++= bavm 3 µλ , 
for all 0>λ , 0>µ  and 1<+ µλ , so that marker iM  

always occupies the patch iP . 

a

b

λa

µb

v1

v2v3

Mi

m
λ

µ
a

b
+

Patch-Pi

Expression-Ei

λ µ
λ µ
 > 0,  > 0
 +  < 1

 
Figure 9. Position of marker iM  in patch iP . 

We also let xa , ya  and xb , yb  represent the x and y 
coordinates of vectors a  and b  respectively. If xm , ym  
and xv3 , yv3  are the respective x and y coordinates of 
vectors m  and 3v , from (I), we can derive, 
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Hence we can calculate the location of marker iM  with 
respect to the patches on each sub-mesh for every 
measured facial action. In an ideal fitting situation, marker 

iM  would always occupy the same path in the same sub-
mesh with identical λ and µ  values. But it hardly happens 
in practice, so that we calculate the difference to determine 
the amount of shift each marker gets in different facial 
actions. 

Now suppose, marker iM occupies the patch iP  in 
expression iE and it shifts to patch jP  in expression jE , 
as depicted in fig.10. 

Mi
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Pj

P’i
λ1 1a

µ1 1b

λ2 2a

µ2 2b

λ1a’

µ1b’

Expression-Ei Expression-Ej

M’’i

S

 
Figure 10. Marker shift with respect to patches in 

expressions. 
 
Let marker location vectors in expression iE be 1a1λ and 

1b1µ . Similarly, that of in expression jE be 22aλ and 

22bµ . Lets consider if patch has not been shifted, as in the 
ideal case. Then we expect iM to be in patch 'iP , which is 

iP  in expression jE  as shown in fig.10 with marker 
position ''iM . Thus, we can calculate the shift vector S  
for each marker and the movement of patch it belongs to, 
in different expressions. Fig.11 shows the human subject 
measured with markers attached. 
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         (a)            (b)              (c)             (d)             (e) 

Figure 11. Patch movement with markers 
(a) Relaxed (b) Relaxed mesh wrapped (c) Grin  

(d) Grin mesh wrapped (e) Shift vector. 
The magnitude of shift vector S  in fig.11 (e) indicates 

the amount of movement in patches in different locations 
of the face.  
 
5.2 Error processing 
 

Shift errors of patches occur due to the failure of patches 
to occupy the identical positions expected in different 
expressions. This error cannot be totally eliminated as in 
the ideal case due to many reasons in practice. One reason 
is that we cannot expect the extracted feature points in 
different actions to lie on the identical positions on the 
face all the time. Therefore, here we apply an iterative 
fitting solution to remedy the shift error, by applying 
fitting algorithm repeatedly with shift vectors.  

Since shift vectors indicate the magnitude of shift of the 
patches concerned, we can treat them as displacement 
vectors that we described previously in the section 2.2 
under the least squares approximation of the mesh fitting 
algorithm. 

Let 'mi  and ''mi represent the position vectors of 
'iM and ''iM (fig.12) and 'm'm ii

yx , and '' , 'm'm ii
yx  represent 

their X, Y coordinates respectively. Since vector S can be 
represented as; ''m'mS ii −= , displacement vectors 

idx and idy  can be defined as, mdxi )( ''' ii mm xx −=  and 

ndy i )( ''' ii mm yy −= , where m and n  represent the unit 
vectors along x and y directions respectively. Thus, 
repetitive least squares algorithm is applied with initial 
polynomial of order 2 and increasing gradually as 
described previously in section 2.2 for smooth mesh 
fitting. Once the coefficients TA are calculated (described 
in section 2.2), each sub-mesh is moved accordingly to 
compensate the shift in patches. We repeatedly applied the 
fitting algorithm for 10 times and the resulting magnitude 
of shift vector between relaxed and grin actions, before 
and after iterations is depicted in fig.12.  
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Figure 12. Shift vector 

improvement 
Table 2. Patch 

mismatch 

Patch mismatch (Table.2) is calculated by extracting the 
patches which were occupied by markers in the relaxed 
face and that have moved away from those initially 
mapped markers in the grin action. Patch length, which is 
calculated as the amount of patch displacement from the 
marker position, is determined for each patch by searching 
its neighbors. If the marker is found in one of the 
immediate neighbors, patch length is set to 1. This 
procedure is repeated for all the markers in each sub-mesh. 
It has been noted that the patch lengths were rarely 
exceeded 2 patches for measured samples of 5 subjects 
with markers. The average shift computes the average in 
all shift vectors those belong to the current sub-mesh. With 
10 iterations, we were able to reduce this shift error more 
than 50%. 
      
6. Discussion 
 

Our mesh adaptation method presented here 
approximates a N-degree polynomial function using least 
squares estimation. In practice, to wrap the mesh on a 
measured 512 x 242, 8-bit resolution face range data takes 
about 15 seconds on Silicon Graphics O2 workstations. 
The variance estimations are quite consistent with 
corrections made to patch shift in different facial actions. 
Apart from very subtle features, such as frills around the 
mouth corners, we were able to estimate the facial 
deformations effectively.  
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