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Abstract 
    Encoding historical films often leads to very 
poor results as the encoder essentially uses large 
amounts of the "bits budget" to encode the 
artefacts as these are abrupt changes in the film. 
This leaves less bits available to encode the "real 
parts" of the scene and thus poor reproduction.  
This paper examines some motion estimation 
strategies, for motion compensated temporal 
filtering, and compares the performance in terms 
of visual quality and in terms of RMS error after 
MPEG encoding. 
 
1. Introduction 
 
    Noise reduction is a major task in processing 
old historic film. The noise can be defined as a 
set of pixels whose brightness changes abruptly 
in temporally and which are spatially distributed 
randomly (they do not form a set of meaningful 
geometrical shapes). If we plot the intensity 
curve in temporal space, of the image brightness 
at a given spatial position, a noise pixel can be 
observed as an abrupt transition in the intensity 
curve. A straightforward approach to reduce 
noise is to use some kind of temporal averaging 
filtering techniques to remove these abrupt 
transitions. However, a fast moving pixel also 
shows a similar behavior to noise, i.e. the 
intensities of a fast moving pixel change very 
sharply during a short time period. The simple 
averaging techniques will result in a blur or even 
lost of the motion objects in the restored scene.  
Thus the question of how to separate the motion 
effects from noise effects becomes a challenge 
problem in historical film restoration.  
     In motion film restoration literature, various 
attempts have been made to estimate the motion 
field in the restoration of video sequences. A 
common one is the block matching approach [1, 
2, 3]. The underlying principal of the block 

matching methods is to make use of the 
redundant information in motion video to find 
the similarity between consequence frames. 
Basically the method divides the image into 
small blocks and looks for the best matching 
block in the succeeding and preceding frames. 
The “best match” usually means that the matched 
pair has a minimum mean absolute or mean 
square intensity difference.  
    Under this paradigm, many block-matching 
based methods have been developed with 
different searching schemes to estimate motion 
vector. Rather than using rigid displacements of 
rectangular blocks, one can use affine distortions 
of the block in searching succeeding and 
preceding frames. An alternative set of 
approaches are based upon a form of Wiener pel-
recursive methods [3, 4] that estimate the motion 
vector by a Taylor series.  
 
1.1. Dual window-searching 
 
    The basic block matching approach will 
always find a match – regardless of how good 
that match is. In an attempted to reduce the risk 
of mis-matching one can use a reverse searching 
validation [5]. We refer this method as a dual 
window-searching method. In this method, for 
each block in the current frame, a matched block 
is found in the target frame. Then a reverse 
direction searching is applied to the matched 
target block for its reverse matching. The method 
further examines whether the reverse matching 
agrees with the forward matching (within some 
error limits). If not, the motion vector is assigned 
to zero (although schemes that try to “fill in” by 
interpolating neighboring motions are also 
possible to envisage).  
    The dual window-searching method, as 
implemented here, finds matches by two 
temporal frames in both directions: two 
succeeding and two preceding frames. Therefore, 
each block in the current frame has four vectors 
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– two in forward directions and two in backward 
directions. For each pixel in the block, a 5 point 
temporal sequence can be filtered for noise 
reduction – we use a simple trimmed mean filter 
(sort the 5 pixels, remove the two ends, average 
the remaining three). 
    The dual window-searching method is quite 
computationally expensive. The method also has 
limitations in dealing with large motions. (This 
can be partially improved by using a larger 
search range, however at greater computational 
expense, also at greater risk of false matches. 
Multi-resolution schemes can also help.) In 
addition the method also fails if there is 
significant distortion in the moving objects as the 
blocks are assumed rigid. 
 
1.2. Modified Weiner pel-recursive Method 
 
    We extend a conventional gradient based 
Wiener pel-recursive approach [6] to estimate 
the four motion vectors. The gradient approach is 
to estimate the displacement vector by solving a 
Taylor series expansion involved equation. 
Consider a basic motion model: 

)1,(),( −+= ndXSnXS    (1) 

where ),( nXS  represents the intensity of the 
pixel X in frame n and the right term represents 
the intensity of a pixel located at X+d in frame n-
1. The right term can be expressed by a Taylor’s 
series with respect to a small vector variable d 
and   high order error in the Taylor series will 
converge to zero as d  becomes smaller. Solving 
above equation obtains an estimator of motion 
vector. This model is very efficient in implement 
but fails to deal with fast motion objects, i.e. a 
large d, due to limitation of the Taylor series [3].  
    A pel-recursive solution is often employed to 
estimate the motion vector in an iterative way. 
Each iteration produces a new update of the 
current estimator of the motion vector. The 
iteration is terminated if the length of the 
updated vector is less than a predefined size. 
This recursive modification extends the range of 
the motion vector to be estimated. A further 
improvement, Wiener pel-recursive estimator, 
was made to improve the robustness of the pel-
recursive method to noisy signal [4]. The method 
took account into the influence of higher order 
terms of Taylor series expansion on the motion 
vector and attempted to minimize the expected 
value of the square error between the true update 
and the estimator.  
    Compared to the dual window-searching 
method, the modified Wiener pel-recursive 

model is a computationally effective approach to 
the estimation of displacement vector in motion 
film processing.  
 
1.3. Affine Block-matching Method 
 
    An affine transformation can model a greater 
variety of motion compared to block matching. 
To some degree, the affine set of deformations 
can model non-rigid body transformations and 
perspective distortions. An affine transformation 
can be defined as: 

bAXX += ’     (2) 
where X  is the pixel position vector in the 

current frame and ’X  is the pixel position in the 
reference frame, A  and b are affine coefficients 
that define rotation, scaling, skew and 
translations of the motion object. The affine 
block-matching method employs equation (2) on 
each block of the current frame and attempts to 
find a set of matching pixels in the reference.  
    However, the affine matching can use its 
greater flexibility to incorrectly match noise 
pixels with non-noise pixels: this can be clearly 
seen in Fig. 1. Another drawback of the affine 
model is very time consuming as it has 6 degrees 
of freedom/parameters compared with 2 in the 
block matching approach. 
  
2. Pixel Classification 
 
    In principle, three categories of pixels need to 
be dealt with: static pixels, moving pixels, and 
noisy pixels. Our basic difficulty is to avoid 
treating moving pixels as noisy pixels. If our 
motion estimation fails for fast motion pixels, 
such as the fast moving leg shown in Figure 1, 
then we will incorrectly filter these pixels as if 
they were noise related. 
    If we could correctly classify pixels into the 
three categories then we may be able to avoid 
some expensive computation (avoid motion 
estimation for static pixels) as well as improve 
the filtering. We could accept some mis-
classification between moving pixels and noise 
pixels if the motion compensated filtering of the 
moving pixels eliminated those that were really 
noise pixels. It is probably too much to hope for 
a completely reliable method to a priori classify 
pixels into these three categories, In this work we 
search for some statistically motivated heuristics 
that may be employed to reduce the mistakes 
and/or reduce the computational cost (with a 
possible small increase in mistakes). 
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    Statistical analysis tools are employed to 
determine the threshold levels for pixel 

classifications. The easiest class to detect would 
appear to be the static pixels. Their temporal  

 

 

 

 

 
 
Fig. 1: Top row: Original frames:  Second row: the dual window-searching restorations. Third row: the 
modified Wiener restorations. Last row: the affine matching restorations. Notice how the dual window 
and the modified Weiner tend to remove the impulsive noise but also tend to blur the fast moving 
objects, such as legs in the sequence. The affine block matching is so flexible that even the noise pixels 
can find matches – the moving objects are not as noticeably blurred though. 

trace would be constants in an ideal world. 
However, frame jitter (frame shake), frame 
flicker (intensity fluctuations common in 

historical film) and general digitization and 
lighting effects, cause the traces deviate from the 
ideal. Firstly, we try to eliminate much of the 
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frame shake by calculating frame correlations (in 
the Fourier domain). This is pretty cheap to 
compute ad relatively effective. Now, for many 
of the frames, the majority of the pixels 
correspond to stationary parts of the scene (in 
many old movies, due to heavy cameras and 
unsophisticated camera techniques, there is little 
zoom, pan or other camera motion). A random 
sampling procedure is repeated to calculate a set 
of differences of pixel gray-levels between 
adjacent frames. The median of these minimum 
derivations provides a basic level that will be 
used to classify the static pixels. A scale factor, 
empirically chosen, is used to scale the deviation 
level to detect non-static (moving and noisy) 
pixels. That is, pixels whose inter-frame 
deviation is less than this factor times the median 
deviation are classified as static and those above 
are classified as “moving or noisy”. 
    As stated before, the separation of noisy from 
moving pixels is the most difficult but most 
central problem. The heuristic we adopt is that, 
unless the region is extremely fast moving, then 
moving pixels will cause a transition that is less 
impulsive: it will last for more than one frame 
interval. Thus, what we do, is to temporal filter 
with a 5 taps and clipped mean is the applied 
form of the filter. This tends to remove totally 
impulsive changes but leave a gradual (but 
smoothed) change where there are non-impulsive 
changes. We then employ the previously 
formulated threshold method to define pixels 
below threshold as noise and above threshold 
(non-impulsive) as moving. As a further heuristic 
we take advantage of the fact that motion areas 
tend to be large and are certainly not isolated 
pixels – we run morphological open and close 
operators over the classified motion pixels to 
remove isolated pixels and remove small holes. 
 
2.1. A Mixed Affine Method 
 
    The affine block matching method is 
ineffective in noise reduction because it is so 
flexible that noise pixels can find an affine 
match. Noise effects can be reduced by selecting 
an error controller, which is used to control some 
 mis-matching, similar in intent to the backward 
match validation in the dual window-searching 
method. However, the idea is not really attractive 
because the affine model is very computationally 
expensive. Instead of using validation after affine 
matching, we consider using pixel selection 
before: we call this a mixed affine method. The 

mixed affine method is based on above pixel 
classification. It uses the affine block matching 
method only on the blocks including moving 
pixels. For other blocks, the dual window 
searching method or fast Wiener method, can be 
used for restoration (remember, the classification 
does not claim to be perfect – just that we find 
the majority of the fast moving pixels). This 
hybrid method greatly improves the visual 
appearance of individual restored frame, 
particularly for pictures including large motion 
figures, such as shown in Figure 2. The 
computational cost is certainly less than the 
standard affine method.  
 
2.2. A Mixed Window-searching Method 
 
    Another mixed method is proposed by the 
weighted average of a single window-searching 
restoration (no backward validation searching) 
and the simple average restoration. This mixed 
method uses pixel classification to determine the 
weight parameters instead of deciding which 
methods are used in which blocks as in the 
mixed affine method. The mixed window 
method can be defined as: 
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where ),( nXα  is a weight parameter, and ),( nXS  

is the restored pixel using the non-validated block 

matching and ),( nXSave  is the pixel restored by 

simple averaging. α  is set smaller for static and noisy 
pixels, and larger for moving pixels.  
 
3. Computational Complexity 

 
    Among three single models, the affine model 
is most time consuming one, the modified 
Wiener model is the cheapest one and the dual 
window searching model is in between. As for 
hybrid model, the mixed affine model speeds up 
the single affine model by applying affine 
matching only in certain heuristically determined 
blocks. The increase in speed depends on the 
number of blocks to be selected, which again 
depends on the motion nature of the sequence. 
The mixed window-searching model is cheaper 
than the single dual window-searching model 
since only one-way searching is conducted. 
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Fig. 2: Top row: motion segmentation,  the moving pixels are in yellow (white in monochrome renditions) and noisy 
pixels are in blue (black in monochrome renditions).  Second row: the mixed affine restorations. Last row: the mixed 
window-searching restorations. Compare row three here with row two of Fig. 1 and row two here with row four of 
Fig. 1. 

     Table 1 shows the computational time using 
different methods and applied to four different 
sequences. For block affine matching, the scale, 
shear and shift factors are range from 0.8 to 1.2, -
2 to 2 and –20 to 20, respectively. A 8x8 block is 
chosen in all models and (16x16x h) searching 
windows are used for the window-searching 
schemes, where h is 1 for the nearest neighbor 
frames and 2 for the second nearest neighbors. 
The run time of the dual window-searching and 
affine methods depends only on the size of 
searching window and the ranges of affine 
coefficients, while other  methods depend on the 
characteristics of individual frames. Of course, 
one can accelerate an implementation, such as by 
using Pentium MMX or Pentium III SSE 
instructions, we have not attempted such hand 
optimizations. 

4. Video coding effects: 
 
    Video coding is vital for motion video storage 
and transmission. This is because motion video 
contains massive amounts of video and audio 
signals. There is a subtle interplay between 
historical film restoration and the effects of 
subsequent video coding, such as popularly used 
MPEG coding. To grossly simplify: encoders try 
to allocate bits to encode changes in a signal.      
Artefacts in an historical film represent abrupt 
changes and thus consume valuable bits from the 
available budget of bits for encoding. This leaves 
less bits for the rest of the scene and hence 
reduces the quality. Thus, we find that though 
our attempts to restore film are not always 
spectacular when viewed prior to encoding; such 
attempts can lead to dramatic improvements in 
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the encoded versions. In this section we examine 
the video coding effects after pre-processing 
with our proposed methods of noise reduction. 
We do this by measuring the storage size after 
encoding. We also compare the RMS error 
(average per frame) of the sequence (compared 
with the frame immediately prior to encoding). 
This is because a smaller encoded result can be 
gained simply by “throwing away more 
information – leading to greater RMS error”. 
Most of our video sequences are in black and 
white CIF format with 352x288 pixels for 
luminance and 25 fps of frame rate. We use 
MPEG-1 compression method in our 
experiments.  Table 2 summarizes the average 
root-mean square error and the size of the 
different restorations after MPEG-1 encoding 
according to set target bitstream of 300 Kbits/s. 
 

5. Conclusion 
 
    We have proposed and explored the use of 
variants of block-matching based methods to 
estimate motion for historical film restoration. 
The proposed methods are based on a pixel 
classification, which segments moving pixels 
and noisy pixels from static ones. We have 
presented a statistical filtering approach to 
classify moving, noisy and stationary pixels. 
Two hybrid methods have been introduced based 
on the pixel classifications. The visual 
performance, the computational costs and the 
video coding effects of the different restoration 
methods have been examined.  
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Model CPU time (sec / per frame) 
Dual Window        280  
 
Modified Wiener 
(frame dependent) 

Sequence 1:  0.3  
Sequence 2:  0.31  
Sequence 3:  0.22  
Sequence 4:  0.38 
 

Affine matching      8770  
 
Mixed affine 
(frame dependent) 

 
Sequence 1: 837.64  
Sequence 2: 1170.45  
 

Mixed window 
(frame dependent) 

Sequence 1:  27.33  
Sequence 2:  28.67  
Sequence 3:  20.19  
Sequence 4:  28.49 

   Size (Mbyte) Seq. Models Ave_rms std 

Before  
encode 

After  
encode 

ORI   10.829 0.783 0.236392 
DW  8.585 0.839 0.219659 
MW  8.483 0.889 0.219524 
A  10.169 0.778 0.225870 
MA  8.696 0.965 0.219479 

 
 
1 

MWIN  8.287 0.919 

 
 
14.59 
 

0.219579 
 
ORI 

 
11.727 

 
0.996 

 
0.233117 

DW 9.594 0.666 0.206695 
MW 9.578 0.691 0.207228 
A 11.374 0.700 0.211998 
MA 11.367 0.707 0.207432 

 
 
 2 

MWIN 9.499 0.712 

 
 
 
13.89 

0.207080 
 
ORI 

 
18.842 

 
0.866 

 
0.063239 

DW 16.335 0.895 0.059783 
MW 16.308 1.014 0.059642 

 
 3 

MWIN 16.292 1.010 

 
 
2.58 

0.059378 
 
ORI 

 
16.027 

 
0.611 

 
0.123477 

DW 14.483 0.711 0.106750 
MW 14.488 0.715 0.107421 

 
 4 

MWIN 14.303 0.748 

 
 
7.20 

0.107470 


