
ACCV2002: The 5th Asian Conference on Computer Vision, 23 – 25 January 2002, Melbourne, Australia

Trail-Dependent Intelligent Scissors Based on Multi-Scale Image Segmentation

Yi-Ping Hung and Yu-Pao Tsai
Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C.

{hung, yptsai}@iis.sinica.edu.tw

Abstract

Image segmentation is a very important topic in

computer vision. However, due to the large variation of
image content, fully automatic image segmentation for
general applications is still an open problem. Therefore,
our goal is to develop an interactive image segmentation
tool that can accurately extract the desired object
boundaries with minimal human efforts. In this paper, we
propose a new trail-dependent intelligent scissors, which
let the user interactively extract desired object
boundaries based on multi-scale image segmentation. By
utilizing the information contained in the trail of the
cursor’s motion, which somewhat implies the intention of
the human operator, our intelligent scissors can allow the
user to extract a desired object boundary with less
mouse-clicking, and hence is more user-friendly. This is
the major advantage of our new intelligent scissors.
Another advantage is that our intelligent scissors permits
the user to trace the object boundary with less tension by
utilizing the coarse-to-fine region boundaries provided by
multi-scale image segmentation. Our experiments have
demonstrated that the new interactive segmentation tool
requires less human efforts than the previously available
tools.

Keywords: image segmentation, intelligent scissors, trail-
dependent, multi-scale, watershed, toboggan algorithm.

1. Introduction

Image segmentation is a very important topic in
computer vision. However, due to the large variation of
image content, fully automatic image segmentation for
general applications is still an open problem. Therefore,
our goal is to develop an interactive image segmentation
tool that can accurately extract the desired object
boundary with minimal human efforts.

Typical examples of interactive image segmentation
tools are magic wand, active contour [1] and intelligent
scissors [2]. Magic wand is a segmentation tool that can
be found in Photoshop. When a user selects a sample
pixel with the magic wand, a connected region will be

formed, which consists of all the pixels that fall within an
adjustable tolerance of the sample pixel. Active contour is
another common tool for image segmentation. It starts
with a given initial contour around the desired object, and
seeks a better contour encompassing the desired object by
minimizing an energy function that combines internal
forces, such as gradient magnitude, with external forces,
such as boundary curvature. Intelligent scissors
interactively shows the optimal path, which is supposed
to coincide with the desired object boundary, from a
given seed point to the current cursor position. Among
the above three tools, intelligent scissors is probably the
most intuitive one to use since the user can trace the
desired boundary by interactively modify the cursor point,
while it is harder to predict the extracted boundary
produced by the magic wand or active contour algorithm.
A brief review on intelligent scissors will be given in
Section 2.

Although the intelligent scissors is relatively intuitive
to use, there is still much room for improvements. A
problem with the previous intelligent scissors is that the
boundaries extracted are trail-independent. That is, the
extracted boundary depends only on the image positions
of the seed point and the current cursor point, and is not
dependent on how the human operator moves the cursor
from the seed point to the current cursor point. In this
paper, we propose a new trail-dependent intelligent
scissors, which let the user interactively extract desired
object boundaries based on multi-scale watershed image
segmentation.

The remainder of this paper is organized as follows.
Section 2 gives a brief review of the conventional
intelligent scissors, and introduces some basic concepts
and terminology that will be used in Section 3. Details of
the proposed trail-dependent intelligent scissors are
presented in Section 3. In Section 3.1, we focus on the
multi-scale region-based technique. In Section 3.2, we
focus on the trail-dependent technique. Section 4 shows
some experimental results and demonstrates the
advantages of our method. Finally, Section 5 gives a
conclusion.

2. Review of Intelligent Scissors

 1

As mentioned in the last section, intelligent scissors [2]
is an interactive image segmentation tool that allows the
human operator to extract desired object boundaries by
selecting a sequence of optimal paths corresponding to
object boundaries. First, the input image is considered as
a weighted graph. All pixels of the input image are nodes
of the weighted graph, with weighted edges connecting
each pixel with its eight adjacent neighbors. The local
cost on a weighted edge E(p,q) that connect the vertex p
and q is calculated by weighting sum of the image feature
functions. After the weighted graph is constructed, the
human operator then selects a seed point. The optimal
paths from the seed point to each pixel are determined by
applying Dijkstra’s shortest path searching algorithm.
Next, when the human operator moves the cursor to an
image position lying on the object boundary he desires,
the piece-wise optimal path between the seed point and
the current cursor point will be displayed accordingly.
This segment of optimal path is called a “live-wire”.

In 1999, Mortensen and Barrett proposed a region-
based intelligent scissors to speedup the pixel-based
intelligent scissors. First, they partitioned the input image
into a collection of regions using the toboggan algorithm.
Notice that, after applying the toboggan algorithm, each
edge of the weighted graph corresponds to a segment of
region boundary that is composed of sequence of pixel
“cracks” (the “crack” between two neighboring pixels).
Let L(p) and N(p) denote the label of pixel p and the 4-
connected neighborhood of pixel p, respectively. The
pixel crack between p and q is defined as the ordered pair
(p,q) such that q∈N(p) and L(p)≠L(q), and the crack
direction vector, d , is the vector

pointing clockwise relative to p. Consider a region with
label l, and suppose that its region boundary is composed
of a sequence of pixel cracks, denoted by

,
where L(p

)(
01
10

, qpqp −






 −
=

,(),,(),..., 112 iiii qpqpq ++)),(),...,,(),,(()(211 nn qppqplB =

i)=l and L(qi)≠l. Then, there is a node on the
region boundary whenever L(qi)≠L(qi+1), and the node
position can be computed by the following equation:

















+++=

1
1

2
1

, ii qpiii dqpη (1)

Further, an edge is represented as a quadruple:
)(rlji l,l,η,ηE (2)

which records its two connected nodes and the labels of
the two adjacent regions separated by this edge E. The
details for computing the edge weights can be found in
[3]. Once the weighted graph is constructed, the
remaining algorithm is the same as the pixel-based
approach. However, when compared with the pixel-based
approach, the number of graph nodes created by the

region-based approach is much less, and hence the
computational cost can be greatly reduced.

3. New Intelligent Scissors

The intelligent scissors described in the previous

section is a good interactive tool for image segmentation.
Our goal is to develop new techniques that can further
reduce human efforts in manual operation. The major
contribution of this paper is to achieve the above goal by
incorporating multi-scale image segmentation and trail-
dependent scheme into the intelligent scissors. The
former is described in Section 3.1 and the latter in Section
3.2.

3.1 Multi-Scale Intelligent Scissors

In Section 2, we have reviewed a region-based
intelligent scissors, which constructs a weighted graph
based on the image partition produced by the toboggan
algorithm. The toboggan algorithm is in fact an algorithm
for implementing watershed segmentation, and the
immersion simulation is the other approach [6].

In watershed segmentation, one can imagine the
watershed regions to be the catchment basins, and the
region boundary to be the ridges around the basin. The
desired object boundaries almost always occur at the
boundaries of those watershed regions. Notice that a
higher ridge implies stronger evidence that an object
boundary exists. Based on the relative height of the ridge,
some researchers [4][5] have proposed methods for
constructing watershed regions with a hierarchical
representation. To construct a hierarchical representation
of segmentation, each boundary segment is assigned a
value, called “dynamics”, when constructing watershed
regions [4]. The dynamics of a ridge is defined to be the
minimal height from bottom of basin to the ridge. Given
a dynamic threshold, Tdyn, connecting regions sharing a
ridge having a dynamics smaller than the threshold will
be merged. Therefore, by adjusting the dynamic
threshold, Tdyn, one can determine the desired level of
watershed segmentation in the hierarchical representation.
If a segment of region boundary exists at a coarser level
of the hierarchical representation, it implies that this
segment of region boundary is more salient or more
important in image segmentation. Figure 1(b) shows the
dynamics of the region boundaries, where the darker lines
represent the region boundaries having larger dynamics.

Usually, the desired object boundaries follow the
segments of region boundary that have higher dynamics.
When tracing the object boundary at a coarser level of the
hierarchical segmentation, the human operator can move
the cursor with less stress since it is less likely to be
interfered by weaker or unimportant edge signals.

 2

Furthermore, the lengths of the boundary segments at the
coarser level tend to be longer than those at the finer level.

Here, we describe a technique for integrating multi-
scale image segmentation into the intelligent scissors.
When constructing the weighted graph based on multi-
scale watershed segmentation, we modify the edge
representation described in Equation (2) as follows in
order to include the dynamics of the graph edge:

),(d,l,l,ηηE rlji
 (3)

where d is the dynamics of the edge E. Before
performing the shortest path search, we first determine
whether an edge should be considered or not with a given
dynamic threshold Tdyn. The edge will only be considered
if its dynamics is larger than Tdyn. Notice that if the
threshold Tdyn is set to be zero, the obtained optimal path
will be exactly the same as that obtained by the
conventional (finest level) region-based intelligent
scissors. Figure 2 illustrates the different results obtained
by applying the intelligent scissors at different levels of
watershed image segmentation. In this experiment, we
arbitrarily select a seed node, marked as “⊕”, and then
move the cursor to an image position, marked as “+” in
the upperthree the images. The lower three images show
the watershed regions constructed with different
dynamics thresholds, Tdyn, and the darkest line indicates
the optimal path found between the seed point and the
cursor point. Figure 2(a) shows the result obtained at the
finest level, which is exactly the same as that obtained by
the conventional region-based intelligent scissors, and
Figures 2(b) and (c) show the result obtained at the
middle and coarser levels, respectively. It can be seen
that the manual operation at the coarser level can extract
the desired object boundary without placing the cursor
right at the desired region boundaries, which allows the
human operator to manipulate the cursor with less stress.

3.2 Trail-Dependent Intelligent Scissors

When extracting object contours from a single image

using an intelligent scissors, the user usually has to select
a series of optimal path segments by carefully clicking
some nodes along the object boundary. The information
contained in the trail of the cursor’s motion, which
somewhat implies the intention of the human operator, is
not used in the conventional intelligent scissors. In this
section, we introduce a new trail-dependent intelligent
scissors, which utilizes the information contained in the
cursor’s trail, and hence can allow the user to extract the
desired object boundary with less mouse-clicking, and
hence is more user-friendly.

First, we apply the same procedure as the conventional
region-based intelligent scissors to create a weighted
graph. Next, we record the cursor’s trail while the human

operator is moving the cursor to select the optimal path.
In our implementation, we record the cursor’s trail in an
ROI (region of interests) map. The ROI map is of the
same size as the input image. While the human operator
is dragging the cursor in the input image, we mask the
pixel in the ROI map corresponding to the cursor position
to be a part of ROI. To allow the human operator to
move the cursor more freely, we let the cursor have an
effective area. We use a mask window centered at the
current cursor point to record the cursor’s trail in the ROI
map. That is, we assume that all the pixels falling within
the mask window are the region in which the human
operator is interested. We called this mask window the
cursor window, W(p) , corresponding to the cursor
position p. To start with, the human operator first selects
the first seed node. Once the human operator begins to
move the cursor, the ROI map will be updated. Then, we
perform the shortest path search algorithm as the
conventional region-based approach, except that all
shortest paths must lie within the ROI. This constrained
search will be referred to as the ROI shortest path search
from now on.

This simple method works well in finding the desired
optimal path from the seed node to the cursor node.
However, it will fail when the ROI is connected to be a
closed path along desired object contour. The desired
path is the closed contour, but unfortunately the optimal
(shortest) path from the seed node to the cursor node is
not. To solve this problem, we must determine whether
the cursor’s trail is a closed path or not. Hence, we need
to know where is the head of the cursor’s trail and when
the cursor’s trail begins to form a closed path. The
former problem can be solved by selecting the first seed
node to be the head of cursor’s trail. But the latter
problem is more troublesome. It is possible that the
cursor may leave from the first seed node and then begin
to approach it again. But it is also possible that the
human operator would like to select the optimal path
around the first seed node.

To distinguish between these two situations, we
assume that the cursor’s trail will form a closed path only
after the cursor has moved out of the bounding area of the
first seed node and entry again. Centered at the first seed
node, we define two areas, the core area and the bounding
area, to help determining the cursor state. The cursor
state is either the initial state, the starting sate, the
developing state, the alerting, or the ending state. The
bounding area is used to determine whether the cursor is
moving out or is reentering. The core area is used to
determine whether the process should be terminated or
not. Figure 3(a) shows the relationship between the core
area and the bounding area. The state diagram shown in
Figure 3(b) illustrates the transition of the cursor state.
The description of each event is listed in Table 1. At the

 3

very beginning, we initialize the cursor state to be the
initial state. In the initial state, the only process is waiting
for the human operator to select the first seed node, and
then the cursor state is switched into the starting state.
After entering the starting state, the state is checked
whenever the human operator is moving the cursor.
Further, the ROI map will be updated and the ROI
shortest path search is performed to compute the optimal
paths, until the cursor state is switched into the ending
state.

Table 1: List of events.

Event
Number Description of the event

1 The human operator selects the first seed node
2 Cursor is moved inside the bounding area
3 Cursor is moved out of the bounding area
4 Cursor is moving outside of the bounding area
5 Cursor is moved into the bounding area
6 Cursor is moved out of the bounding area again
7 Cursor is moving inside the bounding area
8 Cursor is moved into the core area

Figure 4 compares the image segmentation results

obtained by using the trail-dependent and trail-
independent intelligent scissors. As shown in Figure 4(a),
we first select node A to be the initial seed node, and then
move the cursor to node B, C, D, E and F, successively.
The object boundaries extracted by the trail-independent
intelligent scissor at different stages are shown in Figures
4(a), 4(b), 4(c), 4(d), 4(e) and 4(h). On the other hand,
the object boundaries extracted by our trail-dependent
intelligent scissors are shown in Figures 4(a), 4(b), 4(c),
4(d), 4(g) and 4(j). When the cursor is moved from A to
B, to C and to D, the results obtained by both methods are
the same. However, if the cursor continues to move to E
and then to F, the trail-dependent method can still extract
the desired object boundary, while the trail-independent
one will favor an undesired shorter path. Notice that
Figures 4(f) and 4(i) show the cursor’s trail and ROI map
corresponding to Figures 4(g) and 4(j). Here, the cursor
position is indicated by darker dots, which falls within the
shaded region representing the ROI.

4. Experimental Results

Some experimental results are shown in this section in
order to illustrate the advantages of the new intelligent
scissors proposed in this paper. First, consider Figure 5.
Figure 5(a) shows the source image, and Figure 5(b)
shows the watershed regions constructed with a relatively
large dynamics threshold. To begin with, we arbitrarily
click a seed node residing on the desired object contour,

and then move the cursor to extract the desire object
boundary. When the cursor is moving, the ROI map will
be updated and then the shortest path search in ROI will
be performed to compute the optimal path for each node
within the ROI. After the cursor is moved out of the
bounding area (defined in Section 3.2), if it is moved into
the bounding area again, our algorithm will select a new
seed node automatically. Figure 5(c) shows two seed
nodes, one is the initial seed node selected manually and
the other is the one selected automatically by our
algorithm. Finally, the extracted object boundary is the
white line shown in Figure 5(c), and the ROI map and
trail information is shown in 5(d). With our trail-
dependent intelligent scissors, object extraction for simple
images, such as the one shown in Figure 5, usually
requires only one initial button clicking, followed by
simple casual tracing.

The next example is more complex than the first one.
Figure 6(a) shows the source image used in the second
example. Before tracing the object boundary, the user
can first select a dynamics threshold (if he does not like
the default one) so that most of the desired boundaries
can appear at this level of watershed segmentation. For
example, the watershed regions obtained with a relatively
high threshold is shown in Figure 6(b).

First, we select an initial seed node and then move the
cursor along the desired object boundary. When the
cursor is moving around, the extracted boundary
corresponding to the moving cursor will be displayed on-
line to provide interactivity. Unfortunately, the extracted
boundary may not continue to grow as one might expect.
This is because we have selected a relatively high
dynamics threshold, and thus the desired boundary
segment did not appear in the result of watershed
segmentation, as shown in Figure 6(c). One solution is to
lower down the dynamic threshold to allow the weaker
boundary appeared in the watershed segmentation results.
There is an example in Figure 6(d), and the intermediate
result is shown in Figure 6(e). However, more caution
has to be taken and more careful clicking has to be
performed by the user. Hence, after extracting the desired
weak boundary, we can increase the dynamics threshold
to lessen the stress caused by the requirement of accurate
(or high-resolution) cursor movement and mouse clicking.

Based on the multi-scale scheme, the human operator
can decrease the dynamics threshold to select the detailed
edge of a desired object boundary. The final segmentation
result is shown in Figure 6(f).

5. Conclusion

In this paper, we have presented a new interactive
image segmentation tool, which combines two techniques,
the trail-dependent scheme and the multi-scale image

 4

segmentation, with the region-based intelligent scissors.
This new method for interactive image segmentation has
two major advantages over the conventional intelligent
scissors. The first one is due to the utilization of the
cursor trail, which contains the information related to the
intention of the human operator. The use of the trail
information makes our trail-dependent intelligent scissors
require less mouse-clicking, and hence is more user-
friendly. The second advantage is due to the use of multi-
scale watershed segmentation, which prevents the user
from being interfered by weak and irrelevant details and
allows the user to trace the object boundary with less
tension. Another power of using multi-scale watershed
segmentation is that it allows the user to easily adjust the
coarseness of segmentation and adaptive to different
image content. Our experiments have demonstrated that
this new interactive segmentation tool is highly flexible
for any situation, and in general requires less human
efforts than the previously available tools.

6. References

[1] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes:

Active Contour Models,” Int. Journal of Computer
Vision, 1(4): 321-331, 1988.

[2] E. N. Mortensen and W. A. Barrett, "Intelligent
Scissors for Image Composition," in Computer
Graphics (SIGGRAPH `95), pp. 191-198, 1995.

[3] E. N. Mortensen and W. A. Barrett, "Toboggan-Based
Intelligent Scissors with a Four Parameter Edge
Model," in Proc. IEEE: Computer Vision and Pattern
Recognition (CVPR'99), Vol. II, pp. 452-458, June
1999.

[4] L. Najman and M. Schmitt, “Geodesic Saliency of
Watershed Contours and Hierarchical Segmentation,”
IEEE Trans. Pattern Analysis and Machine
Intelligence, 18(12), pp. 1163-1173, 1996.

[5] L. Vincent, “Morphological Grayscale Reconstruction
in Image Analysis: Applications and Efficient
Algorithms,” IEEE Trans. Pattern Analysis and

Machine Intelligence, 2(2), pp.176-201, 1993.
[6] L. Vincent and P. Soille, “Watersheds in Digital

Spaces: An Efficient Algorithm Based on Immersion
Simulations,” IEEE Trans. Pattern Analysis and
Machine Intelligence, 13(6), pp. 583–598, 1991.

(a) (b) (c)

Figure 2. An example of multi-scale intelligent
scissors with (a) smallest (b) middle and (c) largest
Tdyn. The images on the upper row shows the
extracted boundary from the seed point, ⊕ , to the
cursor node that is nearest to the current cursor point,
+. The images on the lower row show the watershed
regions and the optimal paths at different levels.

(a) (b)
Figure 3. The state diagram for determining the cursor
state. (a) shows the relationship between the core area
and the bounding area. (b) shows the state diagram. The
elliptical circles are the states. The state transitions are
shown by using arrows with a number indicating the
associated event. Descriptions of the corresponding
event are summarized in Table 1.

(a) (b)

Figure 1. An example of the hierarchical
representation of watershed. (a) Source image. (b)
Watershed regions. The region boundary segments
marked by darker lines have higher dynamics.

starting state

developing state

alerting state

2

4

6 7

3

1

5

initial state

the first seed node

core area

8
bounding area

ending state

 5

(a) (b) (c)

(d)

(e) (f) (g)

(h) (i) (j)

Figure 4. Comparison between trail-independent and
trail-dependent intelligent scissors. (a),(b),(c),(d),(e),
and (h) show the results of image segmentation obtained
by using the trail-independent intelligent scissors.
(a),(b),(c),(d),(g),(j) show the results obtained by using
the trail-dependent intelligent scissors. The darker
strokes in (f) and (i) are the cursor’s trails of (g) and (j),
respectively. The black dots are the cursor positions.

(a) (d)

(b) (e)

(c) (f)

Figure 6. An example of image segmentation using
the trail-dependent intelligent scissors based on multi-
scale watershed image segmentation. (a) Source
image. (b) Watershed regions with a relatively high
dynamics threshold (c) The intermediate result. There
exists no watershed ridge (with the chosen dynamics
threshold) on the desired object boundary. Hence, the
desired object boundary can not be extracted. (d)
Watershed regions with a relatively low dynamics
threshold. (e) The intermediate result based on the
watershed ridge in (d). (f) The final segmentation
result.

B C A

D

E E

F F

(a) (b) (c) (d)

Figure 5. An example of image segmentation using
the trail-dependent and multi-scale scheme. (a) shows
the source image, and (b) shows the watershed regions
obtained with a high dynamics threshold. (c) shows
the segmentation result and (d) shows its cursor’s
trail.

 6

