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Abstract 

 
Image segmentation is a very important topic in 

computer vision.  However, due to the large variation of 
image content, fully automatic image segmentation for 
general applications is still an open problem.  Therefore, 
our goal is to develop an interactive image segmentation 
tool that can accurately extract the desired object 
boundaries with minimal human efforts.  In this paper, we 
propose a new trail-dependent intelligent scissors, which 
let the user interactively extract desired object 
boundaries based on multi-scale image segmentation.  By 
utilizing the information contained in the trail of the 
cursor’s motion, which somewhat implies the intention of 
the human operator, our intelligent scissors can allow the 
user to extract a desired object boundary with less 
mouse-clicking, and hence is more user-friendly.  This is 
the major advantage of our new intelligent scissors.  
Another advantage is that our intelligent scissors permits 
the user to trace the object boundary with less tension by 
utilizing the coarse-to-fine region boundaries provided by 
multi-scale image segmentation.  Our experiments have 
demonstrated that the new interactive segmentation tool 
requires less human efforts than the previously available 
tools. 
 
Keywords: image segmentation, intelligent scissors, trail-
dependent, multi-scale, watershed, toboggan algorithm. 
 
1. Introduction 
 

Image segmentation is a very important topic in 
computer vision. However, due to the large variation of 
image content, fully automatic image segmentation for 
general applications is still an open problem. Therefore, 
our goal is to develop an interactive image segmentation 
tool that can accurately extract the desired object 
boundary with minimal human efforts.  

Typical examples of interactive image segmentation 
tools are magic wand, active contour [1] and intelligent 
scissors [2].  Magic wand is a segmentation tool that can 
be found in Photoshop. When a user selects a sample 
pixel with the magic wand, a connected region will be 

formed, which consists of all the pixels that fall within an 
adjustable tolerance of the sample pixel. Active contour is 
another common tool for image segmentation.  It starts 
with a given initial contour around the desired object, and 
seeks a better contour encompassing the desired object by 
minimizing an energy function that combines internal 
forces, such as gradient magnitude, with external forces, 
such as boundary curvature. Intelligent scissors 
interactively shows the optimal path, which is supposed 
to coincide with the desired object boundary, from a 
given seed point to the current cursor position.  Among 
the above three tools, intelligent scissors is probably the 
most intuitive one to use since the user can trace the 
desired boundary by interactively modify the cursor point, 
while it is harder to predict the extracted boundary 
produced by the magic wand or active contour algorithm.  
A brief review on intelligent scissors will be given in 
Section 2. 

Although the intelligent scissors is relatively intuitive 
to use, there is still much room for improvements.  A 
problem with the previous intelligent scissors is that the 
boundaries extracted are trail-independent.  That is, the 
extracted boundary depends only on the image positions 
of the seed point and the current cursor point, and is not 
dependent on how the human operator moves the cursor 
from the seed point to the current cursor point.  In this 
paper, we propose a new trail-dependent intelligent 
scissors, which let the user interactively extract desired 
object boundaries based on multi-scale watershed image 
segmentation. 

The remainder of this paper is organized as follows.  
Section 2 gives a brief review of the conventional 
intelligent scissors, and introduces some basic concepts 
and terminology that will be used in Section 3.  Details of 
the proposed trail-dependent intelligent scissors are 
presented in Section 3.  In Section 3.1, we focus on the 
multi-scale region-based technique.  In Section 3.2, we 
focus on the trail-dependent technique.  Section 4 shows 
some experimental results and demonstrates the 
advantages of our method.  Finally, Section 5 gives a 
conclusion. 

 
2. Review of Intelligent Scissors 

 1 



As mentioned in the last section, intelligent scissors [2] 
is an interactive image segmentation tool that allows the 
human operator to extract desired object boundaries by 
selecting a sequence of optimal paths corresponding to 
object boundaries.  First, the input image is considered as 
a weighted graph.  All pixels of the input image are nodes 
of the weighted graph, with weighted edges connecting 
each pixel with its eight adjacent neighbors. The local 
cost on a weighted edge E(p,q) that connect the vertex p 
and q is calculated by weighting sum of the image feature 
functions. After the weighted graph is constructed, the 
human operator then selects a seed point.  The optimal 
paths from the seed point to each pixel are determined by 
applying Dijkstra’s shortest path searching algorithm.  
Next, when the human operator moves the cursor to an 
image position lying on the object boundary he desires, 
the piece-wise optimal path between the seed point and 
the current cursor point will be displayed accordingly. 
This segment of optimal path is called a “live-wire”.  

In 1999, Mortensen and Barrett proposed a region-
based intelligent scissors to speedup the pixel-based 
intelligent scissors.  First, they partitioned the input image 
into a collection of regions using the toboggan algorithm.  
Notice that, after applying the toboggan algorithm, each 
edge of the weighted graph corresponds to a segment of 
region boundary that is composed of sequence of pixel 
“cracks” (the “crack” between two neighboring pixels).  
Let L(p) and N(p) denote the label of pixel p and the 4-
connected neighborhood of pixel p, respectively.  The 
pixel crack between p and q is defined as the ordered pair 
(p,q) such that q∈N(p) and L(p)≠L(q), and the crack 
direction vector, d , is the vector 

pointing clockwise relative to p.  Consider a region with 
label l, and suppose that its region boundary is composed 
of a sequence of pixel cracks, denoted by 
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Further, an edge is represented as a quadruple:  
)( rlji l,l,η,ηE     (2) 

which records its two connected nodes and the labels of 
the two adjacent regions separated by this edge E.  The 
details for computing the edge weights can be found in 
[3].  Once the weighted graph is constructed, the 
remaining algorithm is the same as the pixel-based 
approach.  However, when compared with the pixel-based 
approach, the number of graph nodes created by the 

region-based approach is much less, and hence the 
computational cost can be greatly reduced. 

 
3. New Intelligent Scissors 

 
The intelligent scissors described in the previous 

section is a good interactive tool for image segmentation.  
Our goal is to develop new techniques that can further 
reduce human efforts in manual operation.  The major 
contribution of this paper is to achieve the above goal by 
incorporating multi-scale image segmentation and trail-
dependent scheme into the intelligent scissors.  The 
former is described in Section 3.1 and the latter in Section 
3.2. 

 
3.1 Multi-Scale Intelligent Scissors 
 

In Section 2, we have reviewed a region-based 
intelligent scissors, which constructs a weighted graph 
based on the image partition produced by the toboggan 
algorithm.  The toboggan algorithm is in fact an algorithm 
for implementing watershed segmentation, and the 
immersion simulation is the other approach [6].   

In watershed segmentation, one can imagine the 
watershed regions to be the catchment basins, and the 
region boundary to be the ridges around the basin.  The 
desired object boundaries almost always occur at the 
boundaries of those watershed regions.  Notice that a 
higher ridge implies stronger evidence that an object 
boundary exists.  Based on the relative height of the ridge, 
some researchers [4][5] have proposed methods for 
constructing watershed regions with a hierarchical 
representation.  To construct a hierarchical representation 
of segmentation, each boundary segment is assigned a 
value, called “dynamics”, when constructing watershed 
regions [4].  The dynamics of a ridge is defined to be the 
minimal height from bottom of basin to the ridge.  Given 
a dynamic threshold, Tdyn, connecting regions sharing a 
ridge having a dynamics smaller than the threshold will 
be merged.  Therefore, by adjusting the dynamic 
threshold, Tdyn, one can determine the desired level of 
watershed segmentation in the hierarchical representation.  
If a segment of region boundary exists at a coarser level 
of the hierarchical representation, it implies that this 
segment of region boundary is more salient or more 
important in image segmentation.  Figure 1(b) shows the 
dynamics of the region boundaries, where the darker lines 
represent the region boundaries having larger dynamics.  

Usually, the desired object boundaries follow the 
segments of region boundary that have higher dynamics.  
When tracing the object boundary at a coarser level of the 
hierarchical segmentation, the human operator can move 
the cursor with less stress since it is less likely to be 
interfered by weaker or unimportant edge signals. 
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Furthermore, the lengths of the boundary segments at the 
coarser level tend to be longer than those at the finer level.   

Here, we describe a technique for integrating multi-
scale image segmentation into the intelligent scissors.  
When constructing the weighted graph based on multi-
scale watershed segmentation, we modify the edge 
representation described in Equation (2) as follows in 
order to include the dynamics of the graph edge: 

),( d,l,l,ηηE rlji
       (3) 

where d is the dynamics of the edge E.  Before 
performing the shortest path search, we first determine 
whether an edge should be considered or not with a given 
dynamic threshold Tdyn.  The edge will only be considered 
if its dynamics is larger than Tdyn. Notice that if the 
threshold Tdyn is set to be zero, the obtained optimal path 
will be exactly the same as that obtained by the 
conventional (finest level) region-based intelligent 
scissors.  Figure 2 illustrates the different results obtained 
by applying the intelligent scissors at different levels of 
watershed image segmentation.  In this experiment, we 
arbitrarily select a seed node, marked as “⊕”, and then 
move the cursor to an image position, marked as “+” in 
the upperthree the images. The lower three images show 
the watershed regions constructed with different 
dynamics thresholds, Tdyn, and the darkest line indicates 
the optimal path found between the seed point and the 
cursor point.  Figure 2(a) shows the result obtained at the 
finest level, which is exactly the same as that obtained by 
the conventional region-based intelligent scissors, and 
Figures 2(b) and (c) show the result obtained at the 
middle and coarser levels, respectively.  It can be seen 
that the manual operation at the coarser level can extract 
the desired object boundary without placing the cursor 
right at the desired region boundaries, which allows the 
human operator to manipulate the cursor with less stress. 

 
3.2 Trail-Dependent Intelligent Scissors 

 
When extracting object contours from a single image 

using an intelligent scissors, the user usually has to select 
a series of optimal path segments by carefully clicking 
some nodes along the object boundary.  The information 
contained in the trail of the cursor’s motion, which 
somewhat implies the intention of the human operator, is 
not used in the conventional intelligent scissors.  In this 
section, we introduce a new trail-dependent intelligent 
scissors, which utilizes the information contained in the 
cursor’s trail, and hence can allow the user to extract the 
desired object boundary with less mouse-clicking, and 
hence is more user-friendly.   

First, we apply the same procedure as the conventional 
region-based intelligent scissors to create a weighted 
graph.  Next, we record the cursor’s trail while the human 

operator is moving the cursor to select the optimal path.  
In our implementation, we record the cursor’s trail in an 
ROI (region of interests) map.  The ROI map is of the 
same size as the input image.  While the human operator 
is dragging the cursor in the input image, we mask the 
pixel in the ROI map corresponding to the cursor position 
to be a part of ROI.  To allow the human operator to 
move the cursor more freely, we let the cursor have an 
effective area.  We use a mask window centered at the 
current cursor point to record the cursor’s trail in the ROI 
map.  That is, we assume that all the pixels falling within 
the mask window are the region in which the human 
operator is interested.  We called this mask window the 
cursor window, W(p) , corresponding to the cursor 
position p.  To start with, the human operator first selects 
the first seed node.  Once the human operator begins to 
move the cursor, the ROI map will be updated.  Then, we 
perform the shortest path search algorithm as the 
conventional region-based approach, except that all 
shortest paths must lie within the ROI.  This constrained 
search will be referred to as the ROI shortest path search 
from now on. 

This simple method works well in finding the desired 
optimal path from the seed node to the cursor node.  
However, it will fail when the ROI is connected to be a 
closed path along desired object contour.  The desired 
path is the closed contour, but unfortunately the optimal 
(shortest) path from the seed node to the cursor node is 
not.  To solve this problem, we must determine whether 
the cursor’s trail is a closed path or not.  Hence, we need 
to know where is the head of the cursor’s trail and when 
the cursor’s trail begins to form a closed path.  The 
former problem can be solved by selecting the first seed 
node to be the head of cursor’s trail.  But the latter 
problem is more troublesome.  It is possible that the 
cursor may leave from the first seed node and then begin 
to approach it again.  But it is also possible that the 
human operator would like to select the optimal path 
around the first seed node.   

To distinguish between these two situations, we 
assume that the cursor’s trail will form a closed path only 
after the cursor has moved out of the bounding area of the 
first seed node and entry again.  Centered at the first seed 
node, we define two areas, the core area and the bounding 
area, to help determining the cursor state.  The cursor 
state is either the initial state, the starting sate, the 
developing state, the alerting, or the ending state.  The 
bounding area is used to determine whether the cursor is 
moving out or is reentering.  The core area is used to 
determine whether the process should be terminated or 
not.  Figure 3(a) shows the relationship between the core 
area and the bounding area.  The state diagram shown in 
Figure 3(b) illustrates the transition of the cursor state.  
The description of each event is listed in Table 1.  At the 
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very beginning, we initialize the cursor state to be the 
initial state.  In the initial state, the only process is waiting 
for the human operator to select the first seed node, and 
then the cursor state is switched into the starting state. 
After entering the starting state, the state is checked 
whenever the human operator is moving the cursor.  
Further, the ROI map will be updated and the ROI 
shortest path search is performed to compute the optimal 
paths, until the cursor state is switched into the ending 
state.  

 
Table 1: List of events. 

Event 
Number Description of the event 

1 The human operator selects the first seed node 
2 Cursor is moved inside the bounding area 
3 Cursor is moved out of the bounding area 
4 Cursor is moving outside of the bounding area 
5 Cursor is moved into the bounding area 
6 Cursor is moved out of the bounding area again 
7 Cursor is moving inside the bounding area 
8 Cursor is moved into the core area 

 
Figure 4 compares the image segmentation results 

obtained by using the trail-dependent and trail-
independent intelligent scissors.  As shown in Figure 4(a), 
we first select node A to be the initial seed node, and then 
move the cursor to node B, C, D, E and F, successively.  
The object boundaries extracted by the trail-independent 
intelligent scissor at different stages are shown in Figures 
4(a), 4(b), 4(c), 4(d), 4(e) and 4(h).  On the other hand, 
the object boundaries extracted by our trail-dependent 
intelligent scissors are shown in Figures 4(a), 4(b), 4(c), 
4(d), 4(g) and 4(j).  When the cursor is moved from A to 
B, to C and to D, the results obtained by both methods are 
the same.  However, if the cursor continues to move to E 
and then to F, the trail-dependent method can still extract 
the desired object boundary, while the trail-independent 
one will favor an undesired shorter path.  Notice that 
Figures 4(f) and 4(i) show the cursor’s trail and ROI map 
corresponding to Figures 4(g) and 4(j). Here, the cursor 
position is indicated by darker dots, which falls within the 
shaded region representing the ROI. 

 
4. Experimental Results 
 

Some experimental results are shown in this section in 
order to illustrate the advantages of the new intelligent 
scissors proposed in this paper.  First, consider Figure 5.  
Figure 5(a) shows the source image, and Figure 5(b) 
shows the watershed regions constructed with a relatively 
large dynamics threshold. To begin with, we arbitrarily 
click a seed node residing on the desired object contour, 

and then move the cursor to extract the desire object 
boundary.  When the cursor is moving, the ROI map will 
be updated and then the shortest path search in ROI will 
be performed to compute the optimal path for each node 
within the ROI.  After the cursor is moved out of the 
bounding area (defined in Section 3.2), if it is moved into 
the bounding area again, our algorithm will select a new 
seed node automatically.  Figure 5(c) shows two seed 
nodes, one is the initial seed node selected manually and 
the other is the one selected automatically by our 
algorithm. Finally, the extracted object boundary is the 
white line shown in Figure 5(c), and the ROI map and 
trail information is shown in 5(d).  With our trail-
dependent intelligent scissors, object extraction for simple 
images, such as the one shown in Figure 5, usually 
requires only one initial button clicking, followed by 
simple casual tracing.  

The next example is more complex than the first one.  
Figure 6(a) shows the source image used in the second 
example.  Before tracing the object boundary, the user 
can first select a dynamics threshold (if he does not like 
the default one) so that most of the desired boundaries 
can appear at this level of watershed segmentation.  For 
example, the watershed regions obtained with a relatively 
high threshold is shown in Figure 6(b).   

First, we select an initial seed node and then move the 
cursor along the desired object boundary.  When the 
cursor is moving around, the extracted boundary 
corresponding to the moving cursor will be displayed on-
line to provide interactivity.  Unfortunately, the extracted 
boundary may not continue to grow as one might expect.  
This is because we have selected a relatively high 
dynamics threshold, and thus the desired boundary 
segment did not appear in the result of watershed 
segmentation, as shown in Figure 6(c).  One solution is to 
lower down the dynamic threshold to allow the weaker 
boundary appeared in the watershed segmentation results. 
There is an example in Figure 6(d), and the intermediate 
result is shown in Figure 6(e).  However, more caution 
has to be taken and more careful clicking has to be 
performed by the user.  Hence, after extracting the desired 
weak boundary, we can increase the dynamics threshold 
to lessen the stress caused by the requirement of accurate 
(or high-resolution) cursor movement and mouse clicking.   

Based on the multi-scale scheme, the human operator 
can decrease the dynamics threshold to select the detailed 
edge of a desired object boundary. The final segmentation 
result is shown in Figure 6(f). 
 
5. Conclusion 
 

In this paper, we have presented a new interactive 
image segmentation tool, which combines two techniques, 
the trail-dependent scheme and the multi-scale image 
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segmentation, with the region-based intelligent scissors.  
This new method for interactive image segmentation has 
two major advantages over the conventional intelligent 
scissors.  The first one is due to the utilization of the 
cursor trail, which contains the information related to the 
intention of the human operator.  The use of the trail 
information makes our trail-dependent intelligent scissors 
require less mouse-clicking, and hence is more user-
friendly.  The second advantage is due to the use of multi-
scale watershed segmentation, which prevents the user 
from being interfered by weak and irrelevant details and 
allows the user to trace the object boundary with less 
tension.  Another power of using multi-scale watershed 
segmentation is that it allows the user to easily adjust the 
coarseness of segmentation and adaptive to different 
image content.  Our experiments have demonstrated that 
this new interactive segmentation tool is highly flexible 
for any situation, and in general requires less human 
efforts than the previously available tools. 
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(a)    (b)   (c)   

Figure 2. An example of multi-scale intelligent 
scissors with (a) smallest (b) middle and (c) largest 
Tdyn.  The images on the upper row shows the 
extracted boundary from the seed point, ⊕ , to the 
cursor node that is nearest to the current cursor point, 
+.  The images on the lower row show the watershed 
regions and the optimal paths at different levels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)    (b) 
Figure 3. The state diagram for determining the cursor 
state. (a) shows the relationship between the core area 
and the bounding area. (b) shows the state diagram.  The 
elliptical circles are the states.  The state transitions are 
shown by using arrows with a number indicating the 
associated event.  Descriptions of the corresponding 
event are summarized in Table 1. 

 

 

 
(a)   (b) 

Figure 1. An example of the hierarchical 
representation of watershed. (a) Source image. (b) 
Watershed regions.  The region boundary segments 
marked by darker lines have higher dynamics. 
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(a)  (b)  (c) 

 
(d) 

    
(e)  (f)  (g) 

 

 

  
(h)  (i)  (j) 

Figure 4. Comparison between trail-independent and 
trail-dependent intelligent scissors. (a),(b),(c),(d),(e), 
and (h) show the results of image segmentation obtained 
by using the trail-independent intelligent scissors. 
(a),(b),(c),(d),(g),(j) show the results obtained by using 
the trail-dependent intelligent scissors. The darker 
strokes in (f) and (i) are the cursor’s trails of (g) and (j), 
respectively. The black dots are the cursor positions.  

   
(a)   (d) 

 
(b)   (e) 

  
(c)   (f) 

Figure 6. An example of image segmentation using 
the trail-dependent intelligent scissors based on multi-
scale watershed image segmentation. (a) Source 
image. (b) Watershed regions with a relatively high 
dynamics threshold (c) The intermediate result. There 
exists no watershed ridge (with the chosen dynamics 
threshold) on the desired object boundary. Hence, the 
desired object boundary can not be extracted. (d) 
Watershed regions with a relatively low dynamics 
threshold. (e) The intermediate result based on the 
watershed ridge in (d). (f) The final segmentation 
result. 
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(a)               (b)               (c)             (d) 

Figure 5. An example of image segmentation using 
the trail-dependent and multi-scale scheme.  (a) shows 
the source image, and (b) shows the watershed regions 
obtained with a high dynamics threshold.  (c) shows 
the segmentation result and (d) shows its cursor’s 
trail. 
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